Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sano, Tomokazu*; Eimura, Takayuki*; Hirose, Akio*; Kawahito, Yosuke*; Katayama, Seiji*; Arakawa, Kazuto*; Masaki, Kiyotaka*; Shiro, Ayumi*; Shobu, Takahisa; Sano, Yuji*
Metals, 9(11), p.1192_1 - 1192_13, 2019/11
Times Cited Count:17 Percentile:60.79(Materials Science, Multidisciplinary)The purpose of the present study was to verify the effectiveness of dry laser peening (DryLP), which is the peening technique without a sacrificial overlay under atmospheric conditions using femtosecond laser pulses on the mechanical properties such as hardness, residual stress, and fatigue performance. After DryLP treatment of the laser-welded 2024 aluminum alloy, the softened weld metal recovered to the original hardness of base metal, while residual tensile stress in the weld metal and heat-affected zone changed to compressive stresses. The fatigue life almost doubled at a stress amplitude of 180 MPa and increased by a factor of more than 50 at 120 MPa. As a result, DryLP was found to be more effective for improving the fatigue performance of laser-welded aluminum specimens with welding defects at lower stress amplitudes.
Miyagi, Masanori*; Hongze, W.*; Yoshida, Ryohei*; Kawahito, Yosuke*; Kawakami, Hiroshi*; Shobu, Takahisa
Scientific Reports (Internet), 8(1), p.12944_1 - 12944_10, 2018/08
Times Cited Count:50 Percentile:83.69(Multidisciplinary Sciences)The behavior inside the metal during laser welding is very important because it greatly affects the material strength, defect generation, and so on. In this study, weld pool dynamics in laser welding of various series of aluminum alloys were investigated by the synchrotron radiation X-ray phase contrast imaging system. The experimental results showed that metal irradiated by laser was evaporated immediately, which generated the keyhole. Then metal surrounding the keyhole was melted gradually with the heat from keyhole. The growth rate of keyhole depth had a positive linear correlation with the total content of low boiling temperature elements (TCE), so did the keyhole depth and diameter at the stable stage. Then, by repeating the experiment, we succeeded in quantifying the effect of alloying elements on the dynamics of the weld pool in laser welding of aluminum alloys.
Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Watanabe, Kazuyoshi; Ida, Mizuho*; Ito, Yuzuru; Niitsuma, Shigeto; Edao, Yuki; et al.
Fusion Science and Technology, 66(1), p.46 - 56, 2014/07
Times Cited Count:4 Percentile:29.67(Nuclear Science & Technology)Wakai, Eiichi; Kondo, Hiroo; Sugimoto, Masayoshi; Fukada, Satoshi*; Yagi, Juro*; Ida, Mizuho; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Watanabe, Kazuyoshi; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 88(12), p.691 - 705, 2012/12
no abstracts in English
Tanigawa, Hiroyasu; Hirose, Takanori; Shiba, Kiyoyuki; Kasada, Ryuta*; Wakai, Eiichi; Serizawa, Hisashi*; Kawahito, Yosuke*; Jitsukawa, Shiro; Kimura, Akihiko*; Kono, Yutaka*; et al.
Fusion Engineering and Design, 83(10-12), p.1471 - 1476, 2008/12
Times Cited Count:78 Percentile:97.58(Nuclear Science & Technology)Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems. F82H, which were developed and studied in Japan, was designed with an emphasis on high temperature properties and weldability. The database on F82H properties is currently the most extensive available among the existing RAFMs. The objective of this paper is to review the R&D status of F82H and to identify the key technical issues for the fabrication of an ITER Test Blanket Module (TBM) suggested by recent achievements in Japan.
Hirose, Takanori; Tanigawa, Hiroyasu; Enoeda, Mikio; Kawahito, Yosuke*; Serizawa, Hisashi*; Katayama, Seiji*
no journal, ,
no abstracts in English
Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Furukawa, Tomohiro; Kikuchi, Takayuki; Ito, Yuzuru*; Hoashi, Eiji*; Yoshihashi, Sachiko*; Horiike, Hiroshi*; et al.
no journal, ,
no abstracts in English
Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Hirose, Takanori; Shiba, Kiyoyuki; Serizawa, Hisashi*; Kawahito, Yosuke*; Tanaka, Manabu*; Katayama, Seiji*; Mori, Hiroaki*; Nishimoto, Kazutoshi*
no journal, ,
Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems. These steels have been developed based on substantial industrial experience with high chromium heat resistant ferritic/martensitic steels (such as modified 9Cr-1Mo), but with Mo and Nb replaced by W and Ta, respectively. The objective of this paper is to review the R&D status of F82H and to identify the key technical issues for the fabrication of an ITER Test Blanket Module (TBM) suggested by recent achievements in Japan.
Nakaniwa, Koichi; Ito, Yuzuru; Furuya, Kazuyuki*; Serizawa, Hisashi*; Kawahito, Yosuke*; Wakai, Eiichi
no journal, ,
no abstracts in English
Wakai, Eiichi; Watanabe, Kazuyoshi; Ida, Mizuho*; Kondo, Hiroo; Kanemura, Takuji; Niitsuma, Shigeto*; Fujishiro, Koji; Ito, Yuzuru; Nakaniwa, Koichi; Sugimoto, Masayoshi; et al.
no journal, ,