Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Inoue, Rintaro*; Oda, Takashi; Nakagawa, Hiroshi; Tominaga, Taiki*; Ikegami, Takahisa*; Konuma, Tsuyoshi*; Iwase, Hiroki*; Kawakita, Yukinobu; Sato, Mamoru*; Sugiyama, Masaaki*
Biophysical Journal, 124(3), p.540 - 548, 2025/02
Times Cited Count:0 Percentile:0.00(Biophysics)Li, B.*; Kawakita, Yukinobu
Kakushinteki Reikyaku Gijutsu; Mekanizumu Kara Soshi, Shisutemu Kaihatsu Made, p.19 - 28, 2024/01
no abstracts in English
Zhang, Z.*; Gong, W.; Kawakita, Yukinobu; 9 of others*
Physical Review Materials (Internet), 7(12), p.125402_1 - 125402_9, 2023/12
Times Cited Count:2 Percentile:20.33(Materials Science, Multidisciplinary)Lloveras, P.*; Zhang, Z.*; Zeng, M.*; Barrio, M.*; Kawakita, Yukinobu; Yu, D.*; Lin, S.*; Li, K.*; Moya, X.*; Tamarit, J.-L.*; et al.
Barocaloric Effects in the Solid State; Materials and methods, p.7_1 - 7_30, 2023/10
Times Cited Count:232 Percentile:99.37(Multidisciplinary Sciences)As Chapter 1 of the ebook entitled as "Barocaloric Effects in the Solid State", various plastic crystals (PC) showing colossal barocaloric (BC) effect are introduced. A method to determine the BC response in PCs, thermodynamic origin of BC effects, spectroscopic insights from quasi-elastic neutron scattering and application of PCs are explained.
Sakaguchi, Yoshifumi*; Takata, Shinichi; Kawakita, Yukinobu; Fujimura, Yuki; Kondo, Keietsu
Journal of Physics; Condensed Matter, 35(41), p.415403_1 - 415403_11, 2023/10
Times Cited Count:0 Percentile:0.00(Physics, Condensed Matter)Hirota, Yuki*; Tominaga, Taiki*; Kawabata, Takashi*; Kawakita, Yukinobu; Matsuo, Yasumitsu*
Bioengineering (Internet), 10(5), p.622_1 - 622_17, 2023/05
Times Cited Count:3 Percentile:38.63(Biotechnology & Applied Microbiology)Tamatsukuri, Hiromu; Fukui, Keiga*; Iimura, Soshi*; Honda, Takashi*; Tada, Tomofumi*; Murakami, Yoichi*; Yamaura, Junichi*; Kuramoto, Yoshio*; Sagayama, Hajime*; Yamada, Takeshi*; et al.
Physical Review B, 107(18), p.184114_1 - 184114_8, 2023/05
Times Cited Count:1 Percentile:12.23(Materials Science, Multidisciplinary)Nakamura, Jumpei*; Kawakita, Yukinobu; Okabe, Hirotaka*; Li, B.*; Shimomura, Koichiro*; Suemasu, Takashi*
Journal of Physics and Chemistry of Solids, 175, p.111199_1 - 111199_8, 2023/04
Times Cited Count:3 Percentile:22.06(Chemistry, Multidisciplinary)Hirota, Yuki*; Tominaga, Taiki*; Kawabata, Takashi*; Kawakita, Yukinobu; Matsuo, Yasumitsu*
Bioengineering (Internet), 9(10), p.599_1 - 599_17, 2022/10
Times Cited Count:3 Percentile:22.64(Biotechnology & Applied Microbiology)Omasa, Yoshinori*; Takagi, Shigeyuki*; Toshima, Kento*; Yokoyama, Kaito*; Endo, Wataru*; Orimo, Shinichi*; Saito, Hiroyuki*; Yamada, Takeshi*; Kawakita, Yukinobu; Ikeda, Kazutaka*; et al.
Physical Review Research (Internet), 4(3), p.033215_1 - 033215_9, 2022/09
Hori, Satoshi*; Kanno, Ryoji*; Kwon, O.*; Kato, Yuki*; Yamada, Takeshi*; Matsuura, Masato*; Yonemura, Masao*; Kamiyama, Takashi*; Shibata, Kaoru; Kawakita, Yukinobu
Journal of Physical Chemistry C, 126(22), p.9518 - 9527, 2022/06
Times Cited Count:12 Percentile:61.15(Chemistry, Physical)Furuike, Yoshihiko*; Ouyang, D.*; Tominaga, Taiki*; Matsuo, Tatsuhito*; Mukaiyama, Atsushi*; Kawakita, Yukinobu; Fujiwara, Satoru*; Akiyama, Shuji*
Communications Physics (Internet), 5(1), p.75_1 - 75_12, 2022/04
Times Cited Count:7 Percentile:63.47(Physics, Multidisciplinary)Tominaga, Taiki*; Sahara, Masae*; Kawakita, Yukinobu; Nakagawa, Hiroshi; Yamada, Takeshi*
Journal of Applied Crystallography, 54(6), p.1631 - 1640, 2021/12
Times Cited Count:6 Percentile:57.51(Chemistry, Multidisciplinary)Nakamura, Jumpei*; Kawakita, Yukinobu; Shimomura, Koichiro*; Suemasu, Takashi*
Journal of Applied Physics, 130(19), p.195701_1 - 195701_7, 2021/11
Times Cited Count:4 Percentile:23.69(Physics, Applied)Ito, Kanae; Yamada, Takeshi*; Shinohara, Akihiro*; Takata, Shinichi; Kawakita, Yukinobu
Journal of Physical Chemistry C, 125(39), p.21645 - 21652, 2021/10
Times Cited Count:9 Percentile:41.67(Chemistry, Physical)Matsuura, Masato*; Fujiwara, Yasuyuki*; Moriwake, Hiroki*; Ohara, Koji*; Kawakita, Yukinobu
Physical Review B, 104(9), p.094305_1 - 094305_7, 2021/09
Times Cited Count:9 Percentile:46.19(Materials Science, Multidisciplinary)Nakagawa, Hiroshi; Saio, Tomohide*; Nagao, Michihiro*; Inoue, Rintaro*; Sugiyama, Masaaki*; Ajito, Satoshi; Tominaga, Taiki*; Kawakita, Yukinobu
Biophysical Journal, 120(16), p.3341 - 3354, 2021/08
Times Cited Count:7 Percentile:43.91(Biophysics)A multi-domain protein can have various conformations in solution. Interactions with other molecules result in the stabilization of one of the conformations and change in the domain dynamics. SAXS, a well-established experimental technique, can be employed to elucidate the conformation of a multi-domain protein in solution. NSE spectroscopy is a promising technique for recording the domain dynamics in nanosecond and nanometer scale. Despite the great efforts, there are still under development. Thus, we quantitatively removed the contribution of diffusion dynamics and hydrodynamic interactions from the NSE data via incoherent scattering, revealing the differences in the domain dynamics of the three functional states of a multi-domain protein, MurD. The differences among the three states can be explained by two domain modes.
Hosokawa, Shinya*; Kawakita, Yukinobu; Stellhorn, J. R.*; Pusztai, L.*; Blanc, N.*; Boudet, N.*; Ikeda, Kazutaka*; Otomo, Toshiya*
JPS Conference Proceedings (Internet), 33, p.011070_1 - 011070_7, 2021/03
Local- and intermediate-range atomic order in Ag ion conducting glasses Ag(GeSe
)
with x = 0.15, 0.28, 0.33, and 0.50 were investigated by using a combination of AXS, XRD, ND, and RMC modeling. By adding the ND pdf to AXS and XRD results, reasonable partial structure factors and partial pdf were obtained by the RMC procedure. In contrast to the previous AXS and RMC study, a large number of Ag-Ge and Ge-Ge correlations are observed in the first coordination shell region, which is consistent with an
MD simulation. The coordination numbers around the Ge and Se mostly follow the 8-
rule over all Ag concentrations if Ag is not taken into account. With increasing the Ag concentration, the partial coordination numbers with Ge and Se atoms around Ag remarkably increases, while the Ag-Ag coordination number increases only slightly, indicating that the Ag conducting path is formed through the second neighboring Ag-Ag correlations.
Tominaga, Taiki*; Sahara, Masae*; Kawakita, Yukinobu; Nakagawa, Hiroshi; Shimamoto, Naonobu*
JPS Conference Proceedings (Internet), 33, p.011094_1 - 011094_5, 2021/03
In quasielastic neutron scattering studies, aluminum or aluminum alloys are frequently employed as sample cells. With the increasing incident-neutron flux, the research area currently continues to expand; thus, obtaining data has become quicker than ever for dilute conditions. One such area is the water-containing systems. In this study, we investigated the effect of temperature on Al and found that even in a low temperature atmosphere, Al corrosion can occur. This was attributed to the different thermal expansion coefficients of Al as a base substrate and Al oxide as a passivating film.
Kawakita, Yukinobu; Kikuchi, Tatsuya*; Tahara, Shuta*; Nakamura, Mitsutaka; Inamura, Yasuhiro; Maruyama, Kenji*; Yamauchi, Yasuhiro*; Kawamura, Seiko; Nakajima, Kenji
JPS Conference Proceedings (Internet), 33, p.011071_1 - 011071_6, 2021/03
CuI is a well-known superionic conductor in a high temperature solid phase where the mobile cations migrate between interstitial sites in the f.c.c. sublattice formed by iodine ions. Even in the molten state, it shows several features suggesting collective or cooperative ionic motion. MD results show that Cu diffuses much faster than I. The Cu-Cu partial structure factor have a FSDP which indicates a medium-range ordering of Cu ions. Moreover the Cu-Cu partial pair distribution deeply penetrates into the nearest neighboring Cu-I shell. To reveal origin such anomalous behaviors of molten CuI, we performed quaiselastic neutron scattering (QENS) by the disk-chopper spectrometer AMATERAS at MLF, J-PARC. To interpret the total dynamic structure factor obtained from coherent QENS, the mode distribution analysis was applied. It is found that the motion of iodine is a kind of fluctuating within an almost local area while Cu ions diffuse much faster than iodine ions.