Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron transmission CB-KID imager using samples placed at room temperature

Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.

Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02

Journal Articles

Orientation mapping of YbSn$$_{3}$$ single crystals based on Bragg-dip analysis using a delay-line superconducting sensor

Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Journal of Applied Crystallography, 56(4), p.1108 - 1113, 2023/08

Journal Articles

High spatial resolution neutron transmission imaging using a superconducting two-dimensional detector

Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; et al.

IEEE Transactions on Applied Superconductivity, 31(9), p.2400505_1 - 2400505_5, 2021/12

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

In this study, we employed a superconducting detector, current-biased kinetic-inductance detector (CB-KID) for neutron imaging using a pulsed neutron source. We employed the delay-line method, and high spatial resolution imaging with only four reading channels was achieved. We also performed wavelength-resolved neutron imaging by the time-of-flight method. We obtained the neutron transmission images of a Gd-Al alloy sample, inside which single crystals of GdAl$$_{3}$$ were grown, using the delay-line CB-KID. Single crystals were well imaged, in both shapes and distributions, throughout the Al-Gd alloy. We identified Gd nuclei via neutron transmissions that exhibited characteristic suppression above the neutron wavelength of 0.03 nm. In addition, the $$_{155}$$Gd resonance dip, a dip structure of the transmission caused by the nuclear reaction between an isotope and neutrons, was observed even when the number of events was summed over a limited area of 15 $$mu$$m $$times$$ 12 $$mu$$m. Gd selective imaging was performed using the resonance dip of $$_{155}$$Gd, and it showed clear Gd distribution even with a limited neutron wavelength range of 1 pm.

Journal Articles

Distinct variation of electronic states due to annealing in $$T'$$-type La$$_{1.8}$$Eu$$_{0.2}$$CuO$$_{4}$$ and Nd$$_{2}$$CuO$$_{4}$$

Asano, Shun*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; Kudo, Kota*; Taniguchi, Takanori*; Saito, Shin*; Sunohara, Toshiki*; Kawamata, Takayuki*; Koike, Yoji*; et al.

Physical Review B, 104(21), p.214504_1 - 214504_7, 2021/12

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

Journal Articles

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

One-dimensional spinon spin currents

Hirobe, Daichi*; Sato, Masahiro*; Kawamata, Takayuki*; Shiomi, Yuki*; Uchida, Kenichi*; Iguchi, Ryo*; Koike, Yoji*; Maekawa, Sadamichi; Saito, Eiji

Nature Physics, 13(1), p.30 - 34, 2017/01

 Times Cited Count:91 Percentile:96.69(Physics, Multidisciplinary)

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2011

Watahiki, Shunsuke; Hanakawa, Hiroki; Imaizumi, Tomomi; Nagata, Hiroshi; Ide, Hiroshi; Komukai, Bunsaku; Kimura, Nobuaki; Miyauchi, Masaru; Ito, Masayasu; Nishikata, Kaori; et al.

JAEA-Technology 2013-021, 43 Pages, 2013/07

JAEA-Technology-2013-021.pdf:5.12MB

The number of research reactors in the world is decreasing because of their aging. On the other hand, the necessity of research reactor, which is used for human resources development, progress of the science and technology, industrial use and safety research is increasing for the countries which are planning to introduce the nuclear power plants. From above background, the Neutron Irradiation and Testing Reactor Center began to discuss a basic concept of Multipurpose Compact Research Reactor (MCRR) for education and training, etc., on 2010 to 2012. This activity is also expected to contribute to design tool improvement and human resource development in the center. In 2011, design study of reactor core, irradiation facilities with high versatility and practicality, and hot laboratory equipment for the production of Mo-99 was carried out. As the result of design study of reactor core, subcriticality and operation time of the reactor in consideration of an irradiation capsule, and about the transient response of the reactor to the reactivity disturbance during automatic control operation, it was possible to do automatic operation of MCRR, was confirmed. As the result of design study of irradiation facilities, it was confirmed that the implementation of an efficient mass production radioisotope Mo-99 can be expected. As the result of design study with hot laboratory facilities, Mo-99 production, RI export devised considered cell and facilities for exporting the specimens quickly was designed.

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2010 (Joint research)

Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.

JAEA-Technology 2011-031, 123 Pages, 2012/01

JAEA-Technology-2011-031.pdf:16.08MB

The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.

JAEA Reports

Handling of HTTR second driver fuel elements in assembling and storage working

Tomimoto, Hiroshi; Kato, Yasushi; Owada, Hiroyuki; Sato, Nao; Shimazaki, Yosuke; Kozawa, Takayuki; Shinohara, Masanori; Hamamoto, Shimpei; Tochio, Daisuke; Nojiri, Naoki; et al.

JAEA-Technology 2009-025, 29 Pages, 2009/06

JAEA-Technology-2009-025.pdf:21.78MB

The first driver fuel of the HTTR (High Temperature Engineering test Reactor) was loaded in 1998 and the HTTR reached first criticality state in the same year. The HTTR has been operated using the first driver fuel for a decade. In Fuel elements assembling, 4770 of fuel rods which consist of 12 kinds of enrichment uranium are loaded into 150 fuel graphite blocks for HTTR second driver fuel elements. Measures of prevention of fuel rod miss loading, are employed in fuel design. Additionally, precaution of fuel handling on assembling are considered. Reception of fuel rods, assembling of fuel elements and storage of second driver fuels in the fresh fuel storage rack in the HTTR were started since June, 2008. Assembling, storage and pre-service inspection were divided into three parts. The second driver fuel assembling was completed in September, 2008. This report describes concerns of fuel handling on assembling and storage work for the HTTR fuel elements.

Journal Articles

Design study of the JT-60SA supervisory control system

Kawamata, Yoichi; Naito, Osamu; Kiyono, Kimihiro; Itami, Kiyoshi; Totsuka, Toshiyuki; Akasaka, Hiromi; Sueoka, Michiharu; Sato, Tomoki; Oshima, Takayuki; Sakata, Shinya; et al.

Fusion Engineering and Design, 83(2-3), p.198 - 201, 2008/04

 Times Cited Count:3 Percentile:23.58(Nuclear Science & Technology)

The design activity of JT-60SA (JT-60 Super Advanced) which is remodeled to a superconducting tokamak device has been starting under the JA-EU collaborative ITER-BA project. For the JT-60SA control system, the existing system should be reused as much as possible from the viewpoint of cost-effectiveness. We have just begun to discuss the configuration of the advanced Supervisory Control System (SVCS) including the following systems: (1) ultimately flexible real-time control system, (2) precise timing system enough to clarify cause and effect, and (3) safety shutdown control system. In this report, we present the design study of the JT-60SA SVCS with focusing on these systems.

Journal Articles

Status and prospect of JT-60 plasma control and diagnostic data processing systems for advanced operation scenarios

Kurihara, Kenichi; Yonekawa, Izuru; Kawamata, Yoichi; Sueoka, Michiharu; Hosoyama, Hiroki*; Sakata, Shinya; Oshima, Takayuki; Sato, Minoru; Kiyono, Kimihiro; Ozeki, Takahisa

Fusion Engineering and Design, 81(15-17), p.1729 - 1734, 2006/07

 Times Cited Count:13 Percentile:65.92(Nuclear Science & Technology)

A large tokamak fusion device JT-60 is expected to explore more advanced tokamak discharge scenario towards the ITER and a future power reactor. We believe the following experimental issues are expected to be solved in JT-60. To clarify how to keep a steady-state plasma with high performance, and how to avoid plasma instabilities almost completely. By stimulus of this motivation, several essential development and modifications of plasma control and data acquisition systems have been performed in JT-60. In this report, we discuss the developments to improve the JT-60 plasma control and data acquisition systems. In addition, a future plasma control and data acquisition systems leading to a standard design for a power reactor is envisaged on the basis of the 20-year plasma operation experiences.

JAEA Reports

Development of welding technique by remote control at the JMTR hot laboratory

Shimizu, Michio; Iwamatsu, Shigemi; Takada, Fumiki; Sozawa, Shizuo; Kawamata, Kazuo; Oshima, Kunio; Tsuchiya, Kunihiko; Yamaura, Takayuki; Matsui, Yoshinori; Iwai, Takashi; et al.

JAERI-Tech 2000-029, p.48 - 0, 2000/03

JAERI-Tech-2000-029.pdf:9.26MB

no abstracts in English

Oral presentation

Conceptual design of next generation MTR

Nagata, Hiroshi; Yamaura, Takayuki; Naka, Michihiro; Kawamata, Kazuo; Izumo, Hironobu; Hori, Naohiko; Nagao, Yoshiharu; Kusunoki, Tsuyoshi; Kaminaga, Masanori; Komori, Yoshihiro; et al.

no journal, , 

Conceptual design of the high-performance and low-cost next generation materials testing reactor which will be assumed to introduce to the nuclear power plant introduction country started from 2010 in the JAEA. Japanese atomic energy-related companies participate in this project, and this activity role as the environmental management and nuclear human resource development for the new research reactor designs. 10 MW thermal power by plate type fuel elements and swimming pool type was assumed as a design base. High safety, high cost performance, high reactor operation rate, high technology irradiation are targets of this conceptual design.

Oral presentation

Qualification and techniques for irradiation in JMTR

Hanakawa, Hiroki; Matsui, Yoshinori; Kawamata, Kazuo; Yamaura, Takayuki; Hori, Naohiko; Kusunoki, Tsuyoshi; Kaminaga, Masanori

no journal, , 

JMTR was constructed and achieved first critical in 1968. The irradiation utilization had started from 1970. Main purpose was irradiation test for LWR fuels and materials. Not only main purpose, but also technology development in nuclear fields, RI production and education and training were also purposes of JMTR. The irradiation techniques have been developing in order to achieve these purposes. This irradiation technology and ability will be introduced.

14 (Records 1-14 displayed on this page)
  • 1