Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of transportation container for neutron startup source of High Temperature Engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Sawahata, Hiroaki; Yanagida, Yoshinori; Shinohara, Masanori; Kawamoto, Taiki; Takada, Shoji

JAEA-Technology 2016-038, 36 Pages, 2017/02

JAEA-Technology-2016-038.pdf:8.75MB

The High Temperature Engineering Test Reactor (HTTR) has three neutron startup sources (NSs) in the reactor core, each of which consists of $$^{252}$$Cf with 3.7GBq The NSs are exchanged at the interval of approximately 7 years. The NS holders including NSs are transported from the dealer's hot cell to the reactor facility of HTTR using a transportation container. The loading work of NS holders to the Control Rod guide blocks is subsequently carried out in the fuel handling machine maintenance pit of HTTR. Following technical issues were extracted from the experiences in the past two exchange works of NSs to develop a safety handling procedure; (1) The reduction and prevention of radiation exposure of workers. (2) The exclusion of falling of NS holder. Then, a new transportation container special to the NSs of HTTR was developed to solve the technical issues while keeping the cost as low as that for overhaul of conventional container and satisfying the regulation of A type transportation package.

Journal Articles

Improvement of neutron startup source handling work by developing new transportation container for High-Temperature engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Sawahata, Hiroaki; Shinohara, Masanori; Yanagida, Yoshinori; Kawamoto, Taiki; Takada, Shoji

Journal of Nuclear Science and Technology, 54(2), p.260 - 266, 2017/02

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

The High-Temperature engineering Test Reactor (HTTR) has three neutron startup sources (NSs) in the reactor core, each of which consists of $$^{252}$$Cf with 3.7 GBq and is contained in a small capsule, installed in NS holder and subsequently in a control guide block (CR block). The NSs are exchanged at the interval of approximately 7 years. The NS holders are transported from the dealer's hot cell to the reactor facility of HTTR using a transportation container. The loading work of NS holders to the CR blocks is subsequently carried out in the fuel handling machine maintenance pit of HTTR. Technical issues, which are the reduction and prevention of radiation exposure of workers and the exclusion of falling of NS holder, were extracted from the experiences in past two exchange works of NSs to develop a safety handling procedure. Then, a new transportation container special to the NSs of HTTR was developed to solve the technical issues while keeping the cost as low as that for overhaul of conventional container. As the results, the NS handling work using the new transportation container was safely accomplished by developing the new transportation container which can reduce the risks of radiation exposure dose of workers and exclude the falling of NS holder.

Journal Articles

Development of the prediction technology of cable disconnection of in-core neutron detector for the future high-temperature gas-cooled reactors

Shimazaki, Yosuke; Sawahata, Hiroaki; Kawamoto, Taiki; Suzuki, Hisashi; Shinohara, Masanori; Honda, Yuki; Katsuyama, Kozo; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.041008_1 - 041008_5, 2016/10

Maintenance technologies for the reactor system have been developed by using the high-temperature engineering test reactor (HTTR). One of the important purposes of development is to accumulate the experiences and data to satisfy the availability of operation up to 90% by shortening the duration of the periodical maintenance for the future HTGRs by shifting from the time-based maintenance to condition-based maintenance. The technical issue of the maintenance of in-core neutron detector, wide range monitor (WRM), is to predict the malfunction caused by cable disconnection to plan the replacement schedule. This is because that it is difficult to observe directly inside of the WRM in detail. The electrical inspection method was proposed to detect and predict the cable disconnection of the WRM by remote monitoring from outside of the reactor by using the time domain reflectometry and so on. The disconnection position, which was specified by the electrical method, was identified by non-destructive and destructive inspection. The accumulated data is expected to be contributed for advanced maintenance of future HTGRs.

Journal Articles

Establishment of integrity evaluation method for Reserved Shutdown System of High-Temperature engineering Test Reactor (HTTR)

Hamamoto, Shimpei; Kawamoto, Taiki; Kondo, Makoto; Sawahata, Hiroaki; Takada, Shoji; Shinozaki, Masayuki

Nippon Genshiryoku Gakkai Wabun Rombunshi, 15(2), p.66 - 69, 2016/06

High Temperature engineering Test Reactor (HTTR) has the reactivity control system which is accompanied with the Reserved Shutdown System (RSS). The RSS consists of B$$_{4}$$C/C pellets, guide tube, electric plug, motor which contains brake and reducer, and so on. In accidents when the control rods cannot be inserted, an electric plug is pulled out by motor and the B$$_{4}$$C/C pellets fall into the core by gravity. It was revealed that the motor in the RSS drive mechanism did not work as the result of pre-start up checks as described followings: (1) The oil which was separated from a grease of motor reducer flowed down from gap of oil seal, (2) the separated oil penetrated into the brake, (3) the penetrated oil was mixed with abrasion powder released from brake disk, finally, (4) the adhesive mixture blocked the rotation of the motor. A new evaluation method was proposed to detect a sign of the motor sticking. Through the overhaul inspection of all RSS drive mechanisms of HTTR, it was revealed that the proposed method was effective to evaluate the integrity of the RSS drive mechanism.

Journal Articles

Development of transportation container for the neutron startup source of High Temperature engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Ono, Masato; Tochio, Daisuke; Takada, Shoji; Sawahata, Hiroaki; Kawamoto, Taiki; Hamamoto, Shimpei; Shinohara, Masanori

Proceedings of International Topical Meeting on Research Reactor Fuel Management and Meeting of the International Group on Reactor Research (RRFM/IGORR 2016) (Internet), p.1034 - 1042, 2016/03

In High Temperature Engineering Test Reactor (HTTR), three neutron holders containing $$^{252}$$Cf with 3.7 GBq for each are loaded in the graphite blocks and inserted into the reactor core as a neutron startup source which is changed at the interval of approximately ten years. These neutron holders containing the neutron sources are transported from the dealer's hot cell to HTTR using the transportation container. The holders loading to the graphite block are carried out in the fuel handling machine maintenance pit of HTTR. There were two technical issues for the safety handling work of the neutron holder. The one is the radiation exposure caused by significant movement of the container due to an earthquake, because the conventional transportation container was so large ($$phi$$1240 mm, h1855 mm) that it can not be fixed on the top floor of maintenance pit by bolts. The other is the falling of the neutron holder caused by the difficult remote handling work, because the neutron holder capsule was also so long ($$phi$$155 mm, h1285 mm) that it can not be pulled into the adequate working space in the maintenance pit. Therefore, a new and low cost transportation container, which can solve the issues, was developed. To avoid the neutron and $$gamma$$ ray exposure, smaller transportation container ($$phi$$820mm, h1150 mm) which can be fixed on the top floor of maintenance pit by bolts was developed. In addition, to avoid the falling of the neutron holder, smaller neutron holder capsule ($$phi$$75 mm, h135 mm) with simple handling mechanism which can be treated easily by manipulator was also developed. As the result of development, the neutron holder handling work was safely accomplished. Moreover, a cost reduction for manufacturing was also achieved by simplifying the mechanism of neutron holder capsule and downsizing.

Journal Articles

Development of the prediction technology of cable disconnection of in-core neutron detector for the future high-temperature gas cooled reactors

Shimazaki, Yosuke; Sawahata, Hiroaki; Kawamoto, Taiki; Suzuki, Hisashi; Shinohara, Masanori; Honda, Yuki; Katsuyama, Kozo; Takada, Shoji; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

Maintenance technologies for the reactor system have been developed by using the high-temperature engineering test reactor (HTTR). One of the important purposes of development is to accumulate the experiences and data to satisfy the availability of operation up to 90% by shortening the duration of the periodical maintenance for the future HTGRs by shifting from the time-based maintenance to condition-based maintenance. The technical issue of the maintenance of in-core neutron detector, wide range monitor (WRM), is to predict the malfunction caused by cable disconnection to plan the replacement schedule. This is because that it is difficult to observe directly inside of the WRM in detail. The electrical inspection method was proposed to detect and predict the cable disconnection of the WRM by remote monitoring from outside of the reactor by using the time domain reflectometry and so on. The disconnection position, which was specified by the electrical method, was identified by non-destructive and destructive inspection. The accumulated data is expected to be contributed for advanced maintenance of future HTGRs.

Journal Articles

Development of operation and maintenance technology for HTGRs by using HTTR (High Temperature engineering Test Reactor)

Shimizu, Atsushi; Kawamoto, Taiki; Tochio, Daisuke; Saito, Kenji; Sawahata, Hiroaki; Homma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio; Takada, Shoji; Shinozaki, Masayuki

Nuclear Engineering and Design, 271, p.499 - 504, 2014/05

 Times Cited Count:4 Percentile:58.26(Nuclear Science & Technology)

The long term high temperature operation using HTTR was carried out to establish the technical basis of HTGR in the high temperature test operation mode during 50-day since January till March, 2010. It is necessary to demonstrate the stability of plant during long-term operation in order to attain the stable supply of the high temperature heat to the planned heat utilization system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, Stability and reliability of the components and facility was demonstrated by evaluating the heat transfer performance of high temperature components, the performance of pressure control to compensate helium gas leak, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the operation, the technical basis for the operation and maintenance technology of HTGRs was established.

Journal Articles

Development of operation and maintenance technology of HTTR (High Temperature engineering Test Reactor)

Shimizu, Atsushi; Kawamoto, Taiki; Tochio, Daisuke; Saito, Kenji; Sawahata, Hiroaki; Homma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio; Shinozaki, Masayuki

Proceedings of 6th International Topical Meeting on High Temperature Reactor Technology (HTR 2012) (USB Flash Drive), 8 Pages, 2012/10

To establish the technical basis of HTGR, the long term high temperature operation using HTTR was carried out during 50-day in 2010. It is necessary to demonstrate the stability of plant during long-term operation and the reliability of components and facilities special to HTGRs, in order to attain the stable supply of the high temperature heat to the planned hydrogen production system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, stability and reliability of the components and facility special to HTGRs was demonstrated by evaluating the heat transfer performance of high temperature components, the helium gas leak tightness, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the operation, the technical basis for the operation and maintenance technology of HTGRs were established.

JAEA Reports

Investigation on cause of outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR); Transport operation toward investigation for cause of outage

Shinohara, Masanori; Sawahata, Hiroaki; Kawamoto, Taiki; Motegi, Toshihiro; Saito, Kenji; Takada, Shoji; Yoshida, Naoaki; Isozaki, Ryosuke; Katsuyama, Kozo

JAEA-Technology 2012-025, 31 Pages, 2012/08

JAEA-Technology-2012-025.pdf:4.69MB

An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, a post irradiation examination was planned to specify the damaged part causing the event in the WRM was also planned. For the investigation, the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF). This report describes the preliminary investigation on the cause of outage of the WRM. The results of study for transportation method of the irradiated WRM from HTTR to FMF is also reported with the record to complete the transport operation.

JAEA Reports

Handling of HTTR second driver fuel elements in assembling and storage working

Tomimoto, Hiroshi; Kato, Yasushi; Owada, Hiroyuki; Sato, Nao; Shimazaki, Yosuke; Kozawa, Takayuki; Shinohara, Masanori; Hamamoto, Shimpei; Tochio, Daisuke; Nojiri, Naoki; et al.

JAEA-Technology 2009-025, 29 Pages, 2009/06

JAEA-Technology-2009-025.pdf:21.78MB

The first driver fuel of the HTTR (High Temperature Engineering test Reactor) was loaded in 1998 and the HTTR reached first criticality state in the same year. The HTTR has been operated using the first driver fuel for a decade. In Fuel elements assembling, 4770 of fuel rods which consist of 12 kinds of enrichment uranium are loaded into 150 fuel graphite blocks for HTTR second driver fuel elements. Measures of prevention of fuel rod miss loading, are employed in fuel design. Additionally, precaution of fuel handling on assembling are considered. Reception of fuel rods, assembling of fuel elements and storage of second driver fuels in the fresh fuel storage rack in the HTTR were started since June, 2008. Assembling, storage and pre-service inspection were divided into three parts. The second driver fuel assembling was completed in September, 2008. This report describes concerns of fuel handling on assembling and storage work for the HTTR fuel elements.

JAEA Reports

Report of investigation on malfunction of reserved shutdown system in HTTR

Hamamoto, Shimpei; Iigaki, Kazuhiko; Shimizu, Atsushi; Sawahata, Hiroaki; Kondo, Makoto; Oyama, Sunao; Kawano, Shuichi; Kobayashi, Shoichi; Kawamoto, Taiki; Suzuki, Hisashi; et al.

JAEA-Technology 2006-030, 58 Pages, 2006/03

JAEA-Technology-2006-030.pdf:10.69MB

During normal operation of High Temperature engineering Test Reactor (HTTR) in Japan Atomic Energy Agency (JAEA), the reactivity is controlled by the Control Rods (CRs) system which consists of 32 CRs (16 pairs) and 16 Control Rod Drive Mechanisms (CRDMs). The CR system is located in stand-pipes accompanied by the Reserved Shutdown System (RSS). In the unlikely event that the CRs fail to be inserted, the RSS is provided to insert B$$_{4}$$C/C pellets into the core. The RSS shall be designed so that the reactor should be held subcriticality from any operation condition by dropping in the pellets. The RSS consists of B$$_{4}$$C/C pellets, hoppers which contain the pellets, electric plug, driving mechanisms, guide tubes and so on. In accidents when the CRs cannot be inserted, an electric plug is pulled out by a motor and the absorber pellets fall into the core by gravity. A trouble, malfunction of one RSS out of sixteen, occurred during a series of the pre-start up checks of HTTR on February 21, 2005. We investigated the cause of the RSS trouble and took countermeasures to prevent the issue. As the result of investigation, the cause of the trouble was attributed to the following reason: In the motor inside, The Oil of grease of the multiplying gear flowed down from a gap of the oil seal which has been deformed and was mixed with abrasion powder of brake disk. Therefore the adhesive mixture prevented a motor from rotating.

Journal Articles

Short design descriptions of other systems of the HTTR

Sakaba, Nariaki; Furusawa, Takayuki; Kawamoto, Taiki; Ishii, Yoshiki; Ota, Yukimaru

Nuclear Engineering and Design, 233(1-3), p.147 - 154, 2004/10

 Times Cited Count:10 Percentile:40.57(Nuclear Science & Technology)

The HTTR mainly consists of the core components, reactor pressure vessel, cooling systems, instrumentation and control systems, and containment structures. The design of remaining utility systems is described in this paper. They are: auxiliary helium systems which include the helium purification system, the helium sampling system, and the helium storage and supply system; fuel handling and storage system. The helium purification systems are installed in the primary and secondary helium cooling systems in order to reduce the quantity of chemical impurities. The helium sampling systems monitor the concentration of impurities. The helium storage and supply systems keep the steady pressure of the helium system during the normal operation. The fuel handling and storage system is utilised to handle the new and spent fuels safely and reliably.

JAEA Reports

Power distributions in the High Temperature Engineering Test Reactor (HTTR) by measuring gross gamma ray from the fuel assemblies

Nojiri, Naoki; Shimakawa, Satoshi; Takamatsu, Kuniyoshi; Ishii, Yoshiki; Kawano, Shuichi; Kobayashi, Shoichi; Kawamoto, Taiki; Iyoku, Tatsuo

JAERI-Tech 2003-086, 136 Pages, 2003/11

JAERI-Tech-2003-086.pdf:8.67MB

To provide a basis for determination of the actual core power distribution, The power distribution experiments by measuring gross gamma ray emitted from fission products in the fuel assemblies were performed. The fuel assemblies were not spent condition but in-service condition. The averaged burn up was about 4,400 MWD/t. The gamma ray of a fuel assembly was measured with a GM counter under a temporary fuel withdrawing situation from the core during shutdown state. Uncertainties of the determination were from 3 to 6 percent in axial distribution per one fuel compact and within about 4 percent in radial and axial distribution of the core per one fuel assembly. It was concluded that the power distribution of the HTTR is almost equivalent to the expected power-profile shaping. Calculation of gamma ray distribution was performed by ORIGEN-2 code based the power distribution obtained by the Monte Carlo MVP code. The calculation results show good agreement with the experimental ones. The method, procedure, analysis, correction, determination and comparison are described in this report.

Oral presentation

Overhaul of reserved shutdown system in HTTR

Shimizu, Atsushi; Hamamoto, Shimpei; Kobayashi, Shoichi; Ishii, Yoshiki; Iigaki, Kazuhiko; Inoi, Hiroyuki; Kawamoto, Taiki; Mizushima, Toshihiko; Nakazawa, Toshio

no journal, , 

no abstracts in English

Oral presentation

Completion of long term high temperature operation of HTTR (High Temperature Engineering Test Reactor), 5; Operation and maintenance

Shimizu, Atsushi; Kawamoto, Taiki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Furusawa, Takayuki

no journal, , 

For the long term high temperature operation with HTTR, issues for systems and components, which were extracted based on result of long term rated operation, were solved. As the result, the followings were confirmed; deviation of temperature, flow rate and pressure of the primary and secondary coolant were sufficiently restricted against the disturbance of temperature of atmosphere during day and night. The whole plant was operated stable. It was confirmed that the secondary coolant was stably supplied. New findings were acquired for the operation and maintenance of systems and components for future HTGR development.

Oral presentation

Development of operation and maintenance technique with long term high temperature operation in HTTR, 2; Operation and maintenance of facilities and equipments unique for HTGRs

Shimizu, Atsushi; Kawamoto, Taiki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Furusawa, Takayuki

no journal, , 

no abstracts in English

Oral presentation

The Countermeasures of SBO by taking account of HTTR characteristics

Kondo, Makoto; Homma, Fumitaka; Sawahata, Hiroaki; Hirato, Yoji; Kawamoto, Taiki; Suzuki, Hisashi; Ono, Masato

no journal, , 

no abstracts in English

Oral presentation

Development of new transportation container for neutron startup source of High Temperature Engineering Test Reactor

Shimazaki, Yosuke; Sawahata, Hiroaki; Yanagida, Yoshinori; Shinohara, Masanori; Kawamoto, Taiki; Takada, Shoji

no journal, , 

In High Temperature Engineering Test Reactor (HTTR), three neutron holders containing $$^{252}$$Cf with 3.7GBq for each are loaded in the graphite blocks and inserted into the reactor core as a neutron startup source (NS) which is changed at the interval of approximately 7 years. These neutron holders containing the neutron sources are transported from the dealer's hot cell to HTTR using the transportation container. The holders loading to the graphite block are carried out in the fuel handling machine maintenance pit of HTTR. Technical issues were recognized for the transportation container in the past two exchange works for the safety handling work of NS holder. On the other hand, it was required that an overhaul of the conventional transportation container or development of a new transportation container because the conventional transportation container was manufactured about twenty years ago. Therefore, the development of a new transportation container for NSs, which can solve these technical issues with low cost, was carried out.

Oral presentation

Improvement of neutron startup source (NS) handling work by developing a new transportation container for the NS of High Temperature Engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Sawahata, Hiroaki; Yanagida, Yoshinori; Shinohara, Masanori; Kawamoto, Taiki; Takada, Shoji

no journal, , 

In High Temperature Engineering Test Reactor (HTTR), three neutron holders containing $$^{252}$$Cf with 3.7 GBq for each are loaded in the graphite blocks and inserted into the reactor core as a neutron startup source (NS) which is changed at the interval of approximately 7 years. These neutron holders containing the neutron sources are transported from the dealer's hot cell to HTTR using the transportation container. The holders loading to the graphite block are carried out in the fuel handling machine maintenance pit of HTTR. Technical issues were recognized for the transportation container in the past two exchange works for the safety handling work of NS holder. On the other hand, it was required that an overhaul of the conventional transportation container or development of a new transportation container because the conventional transportation container was manufactured about twenty years ago. Therefore, the development of a new transportation container for NSs, which can solve these technical issues with low cost, was carried out. Radiation exposure dose of workers was reduced. As the result, it was confirmed that the NS handling work was improved by new transportation container.

Oral presentation

Development of technology for improving sealing performance of bolt fastening flange in High Temperature engineering Test Reactor

Hamamoto, Shimpei; Fujiwara, Yusuke; Kawamoto, Taiki; Saikusa, Akio

no journal, , 

A leakage measurement system of primary coolant helium leaked from the bolt fastening flange was constructed at the High Temperature engineering Test Reactor (HTTR). In addition to the helium leakage from the flange, the primary helium pressure, the helium temperature, and the temperature of the flange were measured. The data demonstrated that temperature change of one flange in short-term was associated with tens of percent reduction of helium leakage from bolt fastening flange.

20 (Records 1-20 displayed on this page)
  • 1