Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on operation scenario of tritium production for a fusion reactor using a high temperature gas-cooled reactor

Kawamoto, Yasuko*; Nakaya, Hiroyuki*; Matsuura, Hideaki*; Katayama, Kazunari*; Goto, Minoru; Nakagawa, Shigeaki

Fusion Science and Technology, 68(2), p.397 - 401, 2015/09

 Times Cited Count:1 Percentile:9.74(Nuclear Science & Technology)

To start up a fusion reactor, it is necessary to provide a sufficient amount of tritium from an external device. Herein, methods for supplying a fusion reactor with tritium are discussed. Use of a high temperature gas cooled reactor (HTGR) as a tritium production device has been proposed. So far, the analyses have been focused only on the operation in which fuel is periodically exchanged (batch) using the block type HTGR. In the pebble bed type HTGR, it is possible to design an operation that has no time loss for refueling. The pebble bed type HTGR (PBMR) and the block type HTGR (GTHTR300) are assumed as the calculation and comparison targets. Simulation is made using the continuous-energy Monte Carlo transport code MVPBURN. It is shown that the continuous operation using the pebble bed type HTGR has almost the same tritium productivity compared with the batch operation using the block type HGTR. The issues for pebble bed type HTGR as a tritium production device are discussed.

Oral presentation

Study on transmutation of long-lived fission products using high temperature gas cooled reactor; Effect of ma admixture on transmutation

Kubo, Kotaro*; Matsuura, Hideaki*; Nakaya, Hiroyuki*; Kawamoto, Yasuko*; Nakao, Yasuyuki*; Shimakawa, Satoshi; Goto, Minoru; Nakagawa, Shigeaki

no journal, , 

The transmutation performance for LLFP and Mainer Actinide (MA) was evaluated when 2t of Tc-99 and 50kg of MA was loaded into GTHTR300 core. The compositions of MA was defined as the same as the spent fuel of a PWR with 12 years cooling. The amounts of transmutation were analyzed by performing the burn-up calculation with MVP-BURN for a fuel block geometry. As a result, the transmutation performance of GTHTR300 was evaluated that 18 kg of Tc-99 and 10 kg of MA were transmutated by one year operation.

Oral presentation

Study on tritium production for initial fusion reactor using high temperature gas cooled reactor; Improvement of the tritium containment performance by concentrating Li compound

Nakaya, Hiroyuki*; Matsuura, Hideaki*; Kawamoto, Yasuko*; Nagasumi, Satoru*; Katayama, Kazunari*; Goto, Minoru; Nakagawa, Shigeaki

no journal, , 

We proposed the used of High Temperature Gas-cooled Reactors (HTGR) as a tritium production device, which produces tritium by $$^{6}$$Li(n,$$alpha$$)T reaction, for initial fusion reactors. Concentrating of $$^{6}$$Li suppresses undesirable leakage of produced tritium into reactor coolant. In this study, the effect of $$^{6}$$Li concentration difference on the amount of the tritium leakage and the tritium production efficiency was investigated.

3 (Records 1-3 displayed on this page)
  • 1