Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 49

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of inter-digital H-mode drift-tube linac prototype with alternative phase focusing for a muon linac in the J-PARC muon g-2/EDM experiment

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo; et al.

Journal of Physics; Conference Series, 1350, p.012054_1 - 012054_7, 2019/12

 Times Cited Count:0 Percentile:100

An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.

Journal Articles

Negative muonium ion production with a C12A7 electride film

Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.

Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12

 Times Cited Count:0 Percentile:100

Negative muonium atom ($$mu^+$$e$$^-$$e$$^-$$, Mu$$^-$$) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu$$^-$$ were 10$$^{-3}$$/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu$$^-$$ averaged energy: it was 0.2$$pm$$0.1keV.

Journal Articles

Beam commissioning of muon beamline using negative hydrogen ions generated by ultraviolet light

Nakazawa, Yuga*; Bae, S.*; Choi, H.*; Choi, S.*; Iijima, Toru*; Iinuma, Hiromi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kim, B.*; Ko, H. S.*; et al.

Nuclear Instruments and Methods in Physics Research A, 937, p.164 - 167, 2019/09

 Times Cited Count:1 Percentile:58.8(Instruments & Instrumentation)

A muon linac is under development for the precise measurement of the muon anomalous magnetic moment ($$g$$-2) and electric dipole moment (EDM) with a reaccelerated thermal muon beam. An H$$^-$$ source driven by an ultraviolet light has been developed for the muon acceleration experiment. Prior to the acceleration experiment, a beamline commissioning was performed using this H$$^-$$ beam, since the accelerated muon intensity is very low. We successfully measured the magnetic rigidity, which is essential for identifying the accelerated muons. This H$$^-$$ source is capable of utilizing as a general-purpose beam source for other beamline.

Journal Articles

Prototype of an Inter-digital H-mode Drift-Tube Linac for muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; et al.

Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.180 - 183, 2019/01

We have developed an Interdigital H-mode (IH) Drift-Tube Linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

Journal Articles

Development of a microchannel plate based beam profile monitor for a re-accelerated muon beam

Kim, B.*; Bae, S.*; Choi, H.*; Choi, S.*; Kawamura, Naritoshi*; Kitamura, Ryo*; Ko, H. S.*; Kondo, Yasuhiro; Mibe, Tsutomu*; Otani, Masashi*; et al.

Nuclear Instruments and Methods in Physics Research A, 899, p.22 - 27, 2018/08

 Times Cited Count:4 Percentile:29.78(Instruments & Instrumentation)

A beam profile monitor (BPM) based on a microchannel plate has been developed for muon beams with low transverse momentum for the measurement of the muon anomalous magnetic moment and electric dipole moment at high precision, with capability of diagnosing muon beams of kinetic energy range from a few keV to 4 MeV. The performance of the BPM has been evaluated using a surface muon beam at J-PARC and additionally with an ultraviolet (UV) light source. It has been confirmed that the BPM has a dynamic range from a few to 10$$^4$$ muons per bunch without saturation. The spatial resolution of the BPM has been estimated to be less than 0.30 mm. The positron background from muon decays is an obstacle in muon beam profile monitoring and a partial discrimination of the positrons has been achieved under discrete particle conditions.

Journal Articles

First muon acceleration using a radio-frequency accelerator

Bae, S.*; Choi, H.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; et al.

Physical Review Accelerators and Beams (Internet), 21(5), p.050101_1 - 050101_6, 2018/05

 Times Cited Count:9 Percentile:15.06(Physics, Nuclear)

Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu$$^{-}$$), which are bound states of positive muons and two electrons, are generated from through the electron capture process in an aluminum degrader. The generated Mu$$^{-}$$'s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu$$^{-}$$'s are accelerated to 89 keV. The accelerated Mu$$^{-}$$'s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

Journal Articles

New precise measurement of muonium hyperfine structure interval at J-PARC

Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Keiichi*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11

 Times Cited Count:3 Percentile:6.76

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 4; The Muon Facility

Higemoto, Wataru; Kadono, Ryosuke*; Kawamura, Naritoshi*; Koda, Akihiro*; Kojima, Kenji*; Makimura, Shunsuke*; Matoba, Shiro*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Strasser, P.*

Quantum Beam Science (Internet), 1(1), p.11_1 - 11_24, 2017/06

A muon experimental facility, known as the Muon Science Establishment (MUSE), is one of the user facilities at the Japan Proton Accelerator Research Complex, along with those for neutrons, hadrons, and neutrinos. The MUSE facility is integrated into the Materials and Life Science Facility building in which a high-energy proton beam that is shared with a neutron experiment facility delivers a variety of muon beams for research covering diverse scientific fields. In this review, we present the current status of MUSE, which is still in the process of being developed into its fully fledged form.

Journal Articles

New muonium HFS measurements at J-PARC/MUSE

Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Keiichi*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12

 Times Cited Count:5 Percentile:7.43

Journal Articles

Online monitoring of negative muon beam profiles at J-PARC MUSE using a gated image intensifier

Ito, Takashi; Higemoto, Wataru; Ninomiya, Kazuhiko*; Kubo, Kenya*; Kawamura, Naritoshi*; Shimomura, Koichiro*

JPS Conference Proceedings (Internet), 8, p.036014_1 - 036014_5, 2015/09

Journal Articles

Elemental analysis system with negative-muon beam

Osawa, Takahito; Ninomiya, Kazuhiko*; Yoshida, Go*; Inagaki, Makoto*; Kubo, Kenya*; Kawamura, Naritoshi*; Miyake, Yasuhiro*

JPS Conference Proceedings (Internet), 8, p.025003_1 - 025003_6, 2015/09

We report a new elemental analysis system that uses an intense negative-muon beam at J-PARC Materials and Life Science Experimental Facility, Muon Science Establishment. This paper presents the preliminary results of measurements for meteorites and standard material. The main system components are a water-cooled electromagnet, an Al flight tube, an Al sample chamber, a lead shielding body, and a Ge detector. Optimum currents for the electromagnet were determined by recording beam profiles with a CCD camera; the muon beam was shaped by collimators. The background and signal-to-noise ratio was significantly better than that obtained in a previous study, and all significant elements in the meteorite and standard samples were detected. Thus, this system can be used for muonic X-ray analysis of extraterrestrial materials.

Journal Articles

The Development of a non-destructive analysis system with negative muon beam for industrial devices at J-PARC MUSE

Tampo, Motonobu*; Hamada, Koji*; Kawamura, Naritoshi*; Inagaki, Makoto*; Ito, Takashi; Kojima, Kenji*; Kubo, Kenya*; Ninomiya, Kazuhiko*; Strasser, P.*; Yoshida, Go*; et al.

JPS Conference Proceedings (Internet), 8, p.036016_1 - 036016_6, 2015/09

Journal Articles

Tuning of ultra-slow muon transport system

Adachi, Taihei*; Ikedo, Yutaka*; Nishiyama, Kusuo*; Yabuuchi, Atsushi*; Nagatomo, Takashi*; Strasser, P.*; Ito, Takashi; Higemoto, Wataru; Kojima, Kenji*; Makimura, Shunsuke*; et al.

JPS Conference Proceedings (Internet), 8, p.036017_1 - 036017_4, 2015/09

Journal Articles

Nondestructive elemental depth-profiling analysis by muonic X-ray measurement

Ninomiya, Kazuhiko*; Kubo, Kenya*; Nagatomo, Takashi*; Higemoto, Wataru; Ito, Takashi; Kawamura, Naritoshi*; Strasser, P.*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Suzuki, Takao*; et al.

Analytical Chemistry, 87(9), p.4597 - 4600, 2015/05

 Times Cited Count:11 Percentile:47.24(Chemistry, Analytical)

Journal Articles

A New X-ray fluorescence spectroscopy for extraterrestrial materials using muon beam

Terada, Kentaro*; Ninomiya, Kazuhiko*; Osawa, Takahito; Tachibana, Shogo*; Miyake, Yasuhiro*; Kubo, Kenya*; Kawamura, Naritoshi*; Higemoto, Wataru; Tsuchiyama, Akira*; Ebihara, Mitsuru*; et al.

Scientific Reports (Internet), 4, p.5072_1 - 5072_6, 2014/05

 Times Cited Count:20 Percentile:25.14(Multidisciplinary Sciences)

After the discovery of X-ray by Rontgen, mankind got a new eye to see through things. This fluoroscopy, so-called X-ray radiography that gives the density distribution of the inside of an object, has been applied to the vast research field such as natural/material/medical sciences, industry and technology. The recent development on the intense pulsed muon source at J-PARC MUSE (rate of 106 cps for 60 MeV/c) enabled us to pioneer a new frontier of analytical sciences. Here we report on a non-destructive elemental analysis by using muon capture. Controlling muon's momentum from 32.5 to 57.5 MeV/c. we successfully demonstrated a depth-profile analysis of light elements from several mm-thick layered materials, and non-destructive bulk analyses of meteorites containing organics. Now it is a beginning to utilize a new eye, muon radiography.

Journal Articles

Development of nondestructive and quantitative elemental analysis method using calibration curve between muonic X-ray intensity and elemental composition in bronze

Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Ito, Takashi; Higemoto, Wataru; Kita, Makoto*; Shinohara, Atsushi*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; et al.

Bulletin of the Chemical Society of Japan, 85(2), p.228 - 230, 2012/02

 Times Cited Count:13 Percentile:52.4(Chemistry, Multidisciplinary)

Elemental analysis of bulk materials can be performed by detecting the high-energy X-rays emitted from muonic atoms. Muon irradiation of standard bronze samples was performed to determine the muon capture probabilities for the elemental components from muonic X-ray spectra. Nondestructive elemental analysis of an ancient Chinese coin was also performed.

Journal Articles

Development of elemental analysis by muonic X-ray measurement in J-PARC

Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Saito, Tsutomu*; Higemoto, Wataru

Journal of Physics; Conference Series, 225, p.012040_1 - 012040_4, 2010/06

 Times Cited Count:9 Percentile:5.59

Muon irradiation and muonic X-ray detection can be applied to non-destructive elemental analysis. In this study, in order to develop the elemental analysis by muonic X-ray measurement we constructed a new X-ray measuring system in J-PARC muon facility. We performed muon irradiation for Tempo-koban (Japanese old coin) for test experiment of elemental analysis.

Journal Articles

J-PARC muon facility, MUSE

Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Takeshita, Soshi*; Kobayashi, Yasuo*; et al.

Journal of Physics; Conference Series, 225, p.012036_1 - 012036_7, 2010/06

 Times Cited Count:7 Percentile:8

Journal Articles

J-PARC decay muon channel construction status

Strasser, P.*; Shimomura, Koichiro*; Koda, Akihiro*; Kawamura, Naritoshi*; Fujimori, Hiroshi*; Makimura, Shunsuke*; Kobayashi, Yasuo*; Nakahara, Kazutaka*; Kato, Mineo*; Takeshita, Soshi*; et al.

Journal of Physics; Conference Series, 225, p.012050_1 - 012050_8, 2010/06

 Times Cited Count:11 Percentile:4.06

Journal Articles

Birth of an intense pulsed muon source, J-PARC MUSE

Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Kadono, Ryosuke*; Kato, Mineo*; et al.

Physica B; Condensed Matter, 404(5-7), p.957 - 961, 2009/04

 Times Cited Count:11 Percentile:50.89(Physics, Condensed Matter)

The muon science facility (MUSE) is one of the experimental areas of the J-PARC. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008.

49 (Records 1-20 displayed on this page)