Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Endo, Shunsuke; Abe, Ryota*; Fujioka, Hiroyuki*; Ino, Takashi*; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kawamura, Shiori*; Kimura, Atsushi; Kitaguchi, Masaaki*; Kobayashi, Ryuju*; et al.
European Physical Journal A, 60(8), p.166_1 - 166_10, 2024/08
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Hirota, Katsuya*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.L041602_1 - L041602_4, 2024/04
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Okudaira, Takuya*; Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.044606_1 - 044606_9, 2024/04
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Chiu, I.-H.; Kudo, Takuto*; Asari, Shunsuke*; Sentoku, Sawako*; Takeshita, Soshi*; Shimomura, Koichiro*; et al.
Scientific Reports (Internet), 14, p.1797_1 - 1797_8, 2024/01
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts. A negatively charged muon forms an atomic system owing to its negative charge, and is finally absorbed into the nucleus or decays to an electron. The lifetimes of muons differ significantly, depending on whether they are trapped by Fe or C atoms, and identifying the elemental content at the muon stoppage position is possible via muon lifetime measurements. The relationship between the muon capture probabilities of C/Fe and the elemental content of C exhibits a good linearity, and the C content in the steel may be quantitatively determined via muon lifetime measurements. Furthermore, by controlling the incident energies of the muons, they may be stopped in each layer of a stacked sample consisting of three types of steel plates with thicknesses of 0.5 mm, and we successfully determined the C contents in the range 0.20 - 1.03 wt% depth-selectively, without sample destruction.
Endo, Shunsuke; Kawamura, Shiori*; Okudaira, Takuya*; Yoshikawa, Hiromoto*; Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki
European Physical Journal A, 59(12), p.288_1 - 288_12, 2023/12
Times Cited Count:1 Percentile:34.19(Physics, Nuclear)no abstracts in English
Taira, Yoshitaka*; Endo, Shunsuke; Kawamura, Shiori*; Nambu, Taro*; Okuizumi, Mao*; Shizuma, Toshiyuki*; Omer, M.; Zen, H.*; Okano, Yasuaki*; Kitaguchi, Masaaki*
Physical Review A, 107(6), p.063503_1 - 063503_10, 2023/06
Times Cited Count:5 Percentile:75.86(Optics)no abstracts in English
Kawamura, Shiori*; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Kitaguchi, Masaaki*; Nakamura, Shoji; Okudaira, Takuya*; Rovira Leveroni, G.; Shimizu, Hirohiko*; et al.
JAEA-Conf 2023-001, p.115 - 120, 2023/02
no abstracts in English
Endo, Shunsuke; Shizuma, Toshiyuki*; Zen, H.*; Taira, Yoshitaka*; Omer, M.; Kawamura, Shiori*; Abe, Ryota*; Okudaira, Takuya*; Kitaguchi, Masaaki*; Shimizu, Hirohiko*
UVSOR-49, P. 38, 2022/08
Iida, Kazuki*; Kofu, Maiko; Suzuki, Katsuhiro*; Murai, Naoki; Kawamura, Seiko; Kajimoto, Ryoichi; Inamura, Yasuhiro; Ishikado, Motoyuki*; Hasegawa, Shunsuke*; Masuda, Takatsugu*; et al.
Journal of the Physical Society of Japan, 89(5), p.053702_1 - 053702_5, 2020/05
Times Cited Count:21 Percentile:77.45(Physics, Multidisciplinary)Kawamura, Shunsuke; Naoe, Takashi; Ikeda, Tsubasa*; Tanaka, Nobuatsu*; Futakawa, Masatoshi
Advanced Experimental Mechanics, 4, p.33 - 37, 2019/08
A mercury enclosure vessel made of stainless steel is used as a spallation target in the pulsed spallation neutron source at J-PARC. It is severely damaged by the cavitation induced with pressure waves in association with the pulsed proton beam injection. A double-walled structure with a narrow mercury channel was adopted in the front end of the target vessel to reduce the cavitation damage. It has been experimentally demonstrated that the cavitation damage could be mitigated in the narrow channel but its mechanism has been unclarified yet. In this study, we investigated the cavitation from growing to collapsing through visualizing the spark-induced cavitation bubbles under flow field using a high-speed video camera. Furthermore, we measured the wall vibration due to the cavitation bubble collapse with changing flow velocity parametrically. It was found that the microjet collided perpendicular to the wall in the stagnant flow condition while it collided with an inclined angle from the perpendicular direction, suggesting that the collision pressure on the wall was reduced by flowing.
Higemoto, Wataru; Kadono, Ryosuke*; Kawamura, Naritoshi*; Koda, Akihiro*; Kojima, Kenji*; Makimura, Shunsuke*; Matoba, Shiro*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Strasser, P.*
Quantum Beam Science (Internet), 1(1), p.11_1 - 11_24, 2017/06
A muon experimental facility, known as the Muon Science Establishment (MUSE), is one of the user facilities at the Japan Proton Accelerator Research Complex, along with those for neutrons, hadrons, and neutrinos. The MUSE facility is integrated into the Materials and Life Science Facility building in which a high-energy proton beam that is shared with a neutron experiment facility delivers a variety of muon beams for research covering diverse scientific fields. In this review, we present the current status of MUSE, which is still in the process of being developed into its fully fledged form.
Adachi, Taihei*; Ikedo, Yutaka*; Nishiyama, Kusuo*; Yabuuchi, Atsushi*; Nagatomo, Takashi*; Strasser, P.*; Ito, Takashi; Higemoto, Wataru; Kojima, Kenji*; Makimura, Shunsuke*; et al.
JPS Conference Proceedings (Internet), 8, p.036017_1 - 036017_4, 2015/09
Watahiki, Shunsuke; Hanakawa, Hiroki; Imaizumi, Tomomi; Nagata, Hiroshi; Ide, Hiroshi; Komukai, Bunsaku; Kimura, Nobuaki; Miyauchi, Masaru; Ito, Masayasu; Nishikata, Kaori; et al.
JAEA-Technology 2013-021, 43 Pages, 2013/07
The number of research reactors in the world is decreasing because of their aging. On the other hand, the necessity of research reactor, which is used for human resources development, progress of the science and technology, industrial use and safety research is increasing for the countries which are planning to introduce the nuclear power plants. From above background, the Neutron Irradiation and Testing Reactor Center began to discuss a basic concept of Multipurpose Compact Research Reactor (MCRR) for education and training, etc., on 2010 to 2012. This activity is also expected to contribute to design tool improvement and human resource development in the center. In 2011, design study of reactor core, irradiation facilities with high versatility and practicality, and hot laboratory equipment for the production of Mo-99 was carried out. As the result of design study of reactor core, subcriticality and operation time of the reactor in consideration of an irradiation capsule, and about the transient response of the reactor to the reactivity disturbance during automatic control operation, it was possible to do automatic operation of MCRR, was confirmed. As the result of design study of irradiation facilities, it was confirmed that the implementation of an efficient mass production radioisotope Mo-99 can be expected. As the result of design study with hot laboratory facilities, Mo-99 production, RI export devised considered cell and facilities for exporting the specimens quickly was designed.
Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.
JAEA-Technology 2011-031, 123 Pages, 2012/01
The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.
Tobita, Kenji; Nishio, Satoshi*; Enoeda, Mikio; Nakamura, Hirofumi; Hayashi, Takumi; Asakura, Nobuyuki; Uto, Hiroyasu; Tanigawa, Hiroyasu; Nishitani, Takeo; Isono, Takaaki; et al.
JAEA-Research 2010-019, 194 Pages, 2010/08
This report describes the results of the conceptual design study of the SlimCS fusion DEMO reactor aiming at demonstrating fusion power production in a plant scale and allowing to assess the economic prospects of a fusion power plant. The design study has focused on a compact and low aspect ratio tokamak reactor concept with a reduced-sized central solenoid, which is novel compared with previous tokamak reactor concept such as SSTR (Steady State Tokamak Reactor). The reactor has the main parameters of a major radius of 5.5 m, aspect ratio of 2.6, elongation of 2.0, normalized beta of 4.3, fusion out put of 2.95 GW and average neutron wall load of 3 MW/m. This report covers various aspects of design study including systemic design, physics design, torus configuration, blanket, superconducting magnet, maintenance and building, which were carried out increase the engineering feasibility of the concept.
Strasser, P.*; Shimomura, Koichiro*; Koda, Akihiro*; Kawamura, Naritoshi*; Fujimori, Hiroshi*; Makimura, Shunsuke*; Kobayashi, Yasuo*; Nakahara, Kazutaka*; Kato, Mineo*; Takeshita, Soshi*; et al.
Journal of Physics; Conference Series, 225, p.012050_1 - 012050_8, 2010/06
Times Cited Count:13 Percentile:95.53(Physics, Applied)Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Takeshita, Soshi*; Kobayashi, Yasuo*; et al.
Journal of Physics; Conference Series, 225, p.012036_1 - 012036_7, 2010/06
Times Cited Count:9 Percentile:92.32(Physics, Applied)Tobita, Kenji; Nishio, Satoshi; Enoeda, Mikio; Kawashima, Hisato; Kurita, Genichi; Tanigawa, Hiroyasu; Nakamura, Hirofumi; Honda, Mitsuru; Saito, Ai*; Sato, Satoshi; et al.
Nuclear Fusion, 49(7), p.075029_1 - 075029_10, 2009/07
Times Cited Count:140 Percentile:97.63(Physics, Fluids & Plasmas)Recent design study on SlimCS focused mainly on the torus configuration including blanket, divertor, materials and maintenance scheme. For vertical stability of elongated plasma and high beta access, a sector-wide conducting shell is arranged in between replaceable and permanent blanket. The reactor adopts pressurized-water-cooled solid breeding blanket. Compared with the previous advanced concept with supercritical water, the design options satisfying tritium self-sufficiency are relatively scarce. Considered divertor technology and materials, an allowable heat load to the divertor plate should be 8 MW/m or lower, which can be a critical constraint for determining a handling power of DEMO (a combination of alpha heating power and external input power for current drive).
Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Kadono, Ryosuke*; Kato, Mineo*; et al.
Physica B; Condensed Matter, 404(5-7), p.957 - 961, 2009/04
Times Cited Count:12 Percentile:46.72(Physics, Condensed Matter)The muon science facility (MUSE) is one of the experimental areas of the J-PARC. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008.
Tobita, Kenji; Nishio, Satoshi; Sato, Masayasu; Sakurai, Shinji; Hayashi, Takao; Shibama, Yusuke; Isono, Takaaki; Enoeda, Mikio; Nakamura, Hirofumi; Sato, Satoshi; et al.
Nuclear Fusion, 47(8), p.892 - 899, 2007/08
Times Cited Count:59 Percentile:86.61(Physics, Fluids & Plasmas)The concept for a compact DEMO reactor named "SlimCS" is presented. Distinctive features of the concept is low aspect ratio ( = 2.6) and use of a reduced-size center solenoid (CS) which has a function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field (TF) coil system which contributes to reducing the weight and construction cost of the reactor. SlimCS is as compact as advanced commercial reactor designs such as ARIES-RS and produces 1 GWe in spite of moderate requirements for plasma parameters. Merits of low-
, i.e. vertical stability for high elongation and high beta limit are responsible for such reasonable physics requirements.