Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Harjo, S.; Kubota, Satoru*; Gong, W.*; Kawasaki, Takuro; Gao, S.*
Acta Materialia, 196, p.584 - 594, 2020/09
Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)Harjo, S.; Aizawa, Kazuya; Gong, W.*; Kawasaki, Takuro
Materials Transactions, 61(5), p.828 - 832, 2020/04
Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)Yamashita, Takayuki; Morooka, Satoshi; Harjo, S.; Kawasaki, Takuro; Koga, Norimitsu*; Umezawa, Osamu*
Scripta Materialia, 177, p.6 - 10, 2020/03
Times Cited Count:3 Percentile:15.38(Nanoscience & Nanotechnology)Cho, K.*; Morioka, Ryota*; Harjo, S.; Kawasaki, Takuro; Yasuda, Hiroyuki*
Scripta Materialia, 177, p.106 - 111, 2020/03
Times Cited Count:3 Percentile:8.3(Nanoscience & Nanotechnology)Kim, J.*; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Sakamoto, Tomokazu*; Kawasaki, Takuro; Fukuda, Tatsuo; Sekino, Toru*; Nakayama, Tadachika*; Takeda, Masatoshi*; et al.
Sustainable Energy & Fuels (Internet), 4(3), p.1143 - 1149, 2020/03
Times Cited Count:2 Percentile:17.34(Chemistry, Physical)Naoe, Takashi; Harjo, S.; Kawasaki, Takuro; Xiong, Z.*; Futakawa, Masatoshi
JPS Conference Proceedings (Internet), 28, p.061009_1 - 061009_6, 2020/02
At the J-PARC, a mercury target vessel made of 316L SS suffers proton and neutron radiation environment. The target vessel also suffers cyclic impact stress caused by the proton beam-induced pressure waves. The vessel suffers higher than 4.510
cyclic loading during the expected service life of 5000 h. We have investigated fatigue strength 316L SS up to gigacycle in the previous studies. The cyclic hardening and softening behavior were observed. In this study, to evaluate the cyclic hardening/softening behavior, the dislocation densities of specimens were measured using the neutron diffraction method at the MLF BL-19. The result showed that the dislocation density of a 316L SS was increased with increasing the number of loading cycles. By contrast, in the case of cold-rolled 316L SS, annihilation and re-accumulation of dislocation by cyclic loading were observed. In the workshop, result of neutron diffraction measurement will be introduced with the progress of fatigue test.
Ikeda, Shugo*; Kaneko, Koji; Tanaka, Yuki*; Kawasaki, Takuro; Hanashima, Takayasu*; Munakata, Koji*; Nakao, Akiko*; Kiyanagi, Ryoji; Ohara, Takashi; Mochizuki, Kensei*; et al.
Journal of the Physical Society of Japan, 89(1), p.014707_1 - 014707_7, 2020/01
Times Cited Count:0 Percentile:100(Physics, Multidisciplinary)Woo, W.*; Jeong, J. S.*; Kim, D.-K.*; Lee, C. M.*; Choi, S.-H.*; Suh, J.-Y.*; Lee, S. Y.*; Harjo, S.; Kawasaki, Takuro
Scientific Reports (Internet), 10(1), p.1350_1 - 1350_15, 2020/01
Times Cited Count:1 Percentile:100(Multidisciplinary Sciences)Harjo, S.; Kawasaki, Takuro; Grazzi, F.*; Shinohara, Takenao; Tanaka, Manako*
Materialia, 7, p.100377_1 - 100377_9, 2019/09
Osamura, Kozo*; Machiya, Shutaro*; Kajiwara, Kentaro*; Kawasaki, Takuro; Harjo, S.; Zhang, Y.*; Fujita, Shinji*; Iijima, Yasuhiro*; Hampshire, D. P.*
AIP Advances (Internet), 9(7), p.075216_1 - 075216_11, 2019/07
Times Cited Count:1 Percentile:76.22(Nanoscience & Nanotechnology)Ahadi, A.*; Khaledialidusti, R.*; Kawasaki, Takuro; Harjo, S.; Barnoush, A.*; Tsuchiya, Koichi*
Acta Materialia, 173, p.281 - 291, 2019/07
Times Cited Count:5 Percentile:24.25(Materials Science, Multidisciplinary)Oikawa, Kenichi; Su, Y.; Kiyanagi, Ryoji; Kawasaki, Takuro; Shinohara, Takenao; Kai, Tetsuya; Hiroi, Kosuke; Harjo, S.; Parker, J. D.*; Matsumoto, Yoshihiro*; et al.
Physica B; Condensed Matter, 551, p.436 - 442, 2018/12
Times Cited Count:1 Percentile:87.78(Physics, Condensed Matter)Kawasaki, Takuro; Nakamura, Tatsuya; Gong, W.*; Oikawa, Kenichi
Physica B; Condensed Matter, 551, p.460 - 463, 2018/12
Times Cited Count:0 Percentile:100(Physics, Condensed Matter)Abe, Jun*; Sekine, Kotaro*; Harjo, S.; Kawasaki, Takuro; Aizawa, Kazuya
Physica B; Condensed Matter, 551, p.283 - 286, 2018/12
Times Cited Count:0 Percentile:100(Physics, Condensed Matter)Wang, B.*; He, H.*; Naeem, M.*; Lan, S.*; Harjo, S.; Kawasaki, Takuro; Nie, Y.*; Wang, X.-L.*; 7 of others*
Scripta Materialia, 155, p.54 - 57, 2018/10
Times Cited Count:21 Percentile:5.79(Nanoscience & Nanotechnology)Kawasaki, Takuro; Inamura, Yasuhiro; Ito, Takayoshi*; Nakatani, Takeshi; Harjo, S.; Gong, W.*; Aizawa, Kazuya
Journal of Applied Crystallography, 51(3), p.630 - 634, 2018/06
Times Cited Count:2 Percentile:61.54(Chemistry, Multidisciplinary)Suzuki, Hiroshi; Kusunoki, Koichi*; Satake, Kosuke*; Kanematsu, Manabu*; Koyama, Taku*; Niwa, Akinobu*; Kabayama, Kenji*; Mukai, Tomohisa*; Kawasaki, Takuro; Harjo, S.
Hihakai Kensa, 67(4), p.180 - 186, 2018/04
The bond behavior between rebar and concrete under bending moment was investigated by measuring the stress distribution in the two-dimensionally distributed rebars embedded in the reinforced concrete (RC) beam using neutron diffraction. The stress distributions in both of the main rebar and the transverse stirrups embedded in concrete were successfully measured at the fixed measurement configuration without any sample rotations, by suggesting a simple measurement technique on the premise that the transverse restriction from the surrounding concrete to the main rebar is negligible. The bending and shear fracture behavior of the RC beam specimen was predicted by comparing changes in the stress distribution in the rebars measured by neutron diffraction with respect to the applied stress, with the macroscopic deformation measured by strain gauges fixed on the concrete surface. In this study, it was found that the neutron diffraction technique can be a useful technique to evaluate not only the anchorage performance but also the bending behavior of the RC beam.
Nakamura, Yoshihiko*; Shibata, Akinobu*; Gong, W.*; Harjo, S.; Kawasaki, Takuro; Ito, Atsushi*; Tsuji, Nobuhiro*
Proceedings of International Conference on Martensitic Transformations: Chicago, p.155 - 158, 2018/04
Muta, Hiroaki*; Nishikane, Ryoji*; Ando, Yusuke*; Matsunaga, Junji*; Sakamoto, Kan*; Harjo, S.; Kawasaki, Takuro; Oishi, Yuji*; Kurosaki, Ken*; Yamanaka, Shinsuke*
Journal of Nuclear Materials, 500, p.145 - 152, 2018/03
Times Cited Count:3 Percentile:40.19(Materials Science, Multidisciplinary)Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.