Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ito, Tatsuya; Ogawa, Yuhei*; Gong, W.; Mao, W.*; Kawasaki, Takuro; Okada, Kazuho*; Shibata, Akinobu*; Harjo, S.
Acta Materialia, 287, p.120767_1 - 120767_16, 2025/04
Yamashita, Takayuki*; Morooka, Satoshi; Gong, W.; Kawasaki, Takuro; Harjo, S.; Hojo, Tomohiko*; Okitsu, Yoshitaka*; Fujii, Hidetoshi*
ISIJ International, 64(14), p.2051 - 2060, 2024/12
Ito, Tatsuya; Ogawa, Yuhei*; Gong, W.; Mao, W.*; Kawasaki, Takuro; Okada, Kazuho*; Shibata, Akinobu*; Harjo, S.
Proceedings of the 7th International Symposium on Steel Science (ISSS 2024), p.237 - 240, 2024/11
Liss, K.-D.*; Han, J.-K.*; Blankenburg, M.*; Lienert, U.*; Harjo, S.; Kawasaki, Takuro; Xu, P. G.; Yukutake, Eitaro*; Kawasaki, M.*
Journal of Materials Science, 59(14), p.5831 - 5853, 2024/04
Times Cited Count:2 Percentile:77.00(Materials Science, Multidisciplinary)Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.
JAEA-Technology 2023-027, 146 Pages, 2024/03
By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been applied as a method to quickly and extensively measure the distribution of radiation. Japan Atomic Energy Agency (JAEA) has continuously conducted ARM via manned helicopter around FDNPS. In this report, we summarize the results of the ARM around FDNPS in the fiscal year 2022, evaluate the changes of ambient dose rates and other parameters based on the comparison to the past ARM results, and discuss the causes of such changes. In order to contribute to improve the accuracy of ambient dose rate conversion, we analyzed the ARM data taking into account undulating topography, and evaluated the effect of this method. Furthermore, the effect of radon progenies in the air on the ARM was evaluated by applying the discrimination method to the measurement results.
Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.
JAEA-Technology 2023-026, 161 Pages, 2024/03
By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been utilized as a method to quickly and extensively measure radiation distribution surrounding FDNPS. In order to utilize ARM and to promptly provide the results during a nuclear emergency, information on background radiation levels, topographical features, and controlled airspace surrounding nationwide nuclear facilities have been prepared in advance. In the fiscal year 2022, we conducted ARM around the Mihama Nuclear Power Station of Kansai Electric Power Company (KEPCO), the Tsuruga Power Station of Japan Atomic Power Company (JAPC), and the Ikata Power Station of Shikoku Electric Power Company (YONDEN), and prepared information on background radiation doses and controlled airspace. In addition, we have developed an aerial radiation detection system via unmanned airplane, which is expected to be an alternative to ARM, during a nuclear emergency. This report summarizes the results and technical issues identified.
Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Nagaoka, Mika; Koike, Yuko; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.
JAEA-Review 2023-052, 118 Pages, 2024/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2022. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Yamashita, Takayuki*; Morooka, Satoshi; Gong, W.; Kawasaki, Takuro; Harjo, S.; Hojo, Tomohiko*; Okitsu, Yoshitaka*; Fujii, Hidetoshi*
Tetsu To Hagane, 110(3), p.241 - 251, 2024/02
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Koyama, Motomichi*; Yamashita, Takayuki*; Morooka, Satoshi; Sawaguchi, Takahiro*; Yang, Z.*; Hojo, Tomohiko*; Kawasaki, Takuro; Harjo, S.
Tetsu To Hagane, 110(3), p.197 - 204, 2024/02
Times Cited Count:1 Percentile:63.56(Metallurgy & Metallurgical Engineering)Koyama, Motomichi*; Yamashita, Takayuki*; Morooka, Satoshi; Yang, Z.*; Varanasi, R. S.*; Hojo, Tomohiko*; Kawasaki, Takuro; Harjo, S.
Tetsu To Hagane, 110(3), p.205 - 216, 2024/02
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Ueji, Rintaro*; Gong, W.; Harjo, S.; Kawasaki, Takuro; Shibata, Akinobu*; Kimura, Yuji*; Inoue, Tadanobu*; Tsuchida, Noriyuki*
ISIJ International, 64(2), p.459 - 465, 2024/01
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Yamashita, Takayuki*; Harjo, S.; Kawasaki, Takuro; Morooka, Satoshi; Gong, W.; Fujii, Hidetoshi*; Tomota, Yo*
ISIJ International, 64(2), p.192 - 201, 2024/01
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Sumida, Kazuki; Fujita, Yuichi*; Zhou, W.*; Masuda, Keisuke*; Kawasaki, Ikuto; Fujimori, Shinichi; Kimura, Akio*; Sakuraba, Yuya*
Physical Review B, 108(24), p.L241101_1 - L241101_6, 2023/12
Times Cited Count:2 Percentile:37.72(Materials Science, Multidisciplinary)Fujimori, Shinichi; Kawasaki, Ikuto; Takeda, Yukiharu; Yamagami, Hiroshi; Sasabe, Norimasa*; Sato, Yoshiki*; Shimizu, Yusei*; Nakamura, Ai*; Maruya, A.*; Homma, Yoshiya*; et al.
Electronic Structure (Internet), 5(4), p.045009_1 - 045009_7, 2023/11
Dannoshita, Hiroyuki*; Hasegawa, Hiroshi*; Higuchi, Sho*; Matsuda, Hiroshi*; Gong, W.; Kawasaki, Takuro; Harjo, S.; Umezawa, Osamu*
Scripta Materialia, 236, p.115648_1 - 115648_5, 2023/11
Times Cited Count:1 Percentile:17.78(Nanoscience & Nanotechnology)Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.
Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10
Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.
Kawasaki, Ikuto; Takeuchi, Kazuharu*; Fujimori, Shinichi; Takeda, Yukiharu; Yamagami, Hiroshi; Yamamoto, Etsuji; Haga, Yoshinori
Physical Review B, 108(16), p.165127_1 - 165127_9, 2023/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Nagai, Yuya; Shuji, Yoshiyuki; Kawasaki, Takeshi; Aita, Takahiro; Kimura, Yasuhisa; Nemoto, Yasunori*; Onuma, Takeshi*; Tomiyama, Noboru*; Hirano, Koji*; Usui, Yasuhiro*; et al.
JAEA-Technology 2022-039, 117 Pages, 2023/06
Japan Atomic Energy Agency (JAEA) manages wide range of nuclear facilities. Many of these facilities are required to be performed adjustment with the aging and complement with the new regulatory standards and the earthquake resistant, since the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Station accident. It is therefore desirable to promote decommissioning of facilities that have reached the end of their productive life in order to reduce risk and maintenance costs. However, the progress of facility decommissioning require large amount of money and radioactive waste storage space. In order to address these issues, JAEA has formulated a "The Medium/Long-Term Management Plan of JAEA Facilities" with three pillars: (1) consolidation and prioritization of facilities, (2) assurance of facility safety, and (3) back-end countermeasures. In this plan, Plutonium Fuel Fabrication Facility has been selected as primary decommissioned facility, and dismantling of equipment in the facilities have been underway. In this report, size reduction activities of the glove box W-9 and a part of tunnel F-1, which was connected to W-9, are presented, and the obtained findings are highlighted. The glovebox W-9 had oxidation & reduction furnace, and pellet crushing machine as equipment interior. The duration of activity took six years from February 2014 to February 2020, including suspended period of 4 years due to the enhanced authorization approval process.
Kawasaki, Ikuto; Fujimori, Shinichi; Takeda, Yukiharu; Yamagami, Hiroshi; Onuki, Yoshichika*
Journal of the Physical Society of Japan, 92(6), p.064709_1 - 064709_8, 2023/06
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Nakada, Akira; Kanai, Katsuta; Kokubun, Yuji; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei*; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; et al.
JAEA-Review 2022-079, 116 Pages, 2023/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2021. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.