Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:20 Percentile:95.45(Multidisciplinary Sciences)no abstracts in English
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Times Cited Count:3 Percentile:71.80(Astronomy & Astrophysics)Detailed -ray spectroscopy of the exotic neon isotope
Ne has been performed using the one-neutron removal reaction from
Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for
Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Watanabe, Yukinobu*; Sadamatsu, Hiroki*; Araki, Shohei; Nakano, Keita; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.
EPJ Web of Conferences, 284, p.01041_1 - 01041_4, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Intensive fast neutron sources using deuteron accelerators have been proposed for the study of medical RI production, radiation damage for fusion reactor materials, nuclear transmutation of radioactive waste, and so on. Neutron production data from various materials bombarded by deuterons are required for the design of such neutron sources. In the present work, we have conducted a systematic measurement of double-differential neutron production cross sections (DDXs) for a wide atomic number range of targets (Li, Be, C, Al, Cu, Nb, In, Ta, and Au) at an incident energy of 200 MeV in the Research Center for Nuclear Physics (RCNP), Osaka University. A deuteron beam accelerated to 200 MeV was transported to the neutron experimental hall and focused on a thin target foil. Emitted neutrons from the target were detected by two different-size EJ301 liquid organic scintillators located at two distances of 7 m and 20 m, respectively. The neutron DDXs were measured at six angles from 0 to 25
). The neutron energy was determined by a conventional time-of-flight (TOF) method. The measured DDXs were compared with theoretical model calculations by the DEUteron-induced Reaction Analysis Code System (DEURACS) and PHITS. The result indicated that the DEURACS calculation provides better agreement with the measured DDXs than the PHITS calculation.
Kawase, Shoichiro*; Kimura, Atsushi; Harada, Hideo; Iwamoto, Nobuyuki; Iwamoto, Osamu; Nakamura, Shoji; Segawa, Mariko; Toh, Yosuke
Journal of Nuclear Science and Technology, 58(7), p.764 - 786, 2021/07
Times Cited Count:4 Percentile:35.51(Nuclear Science & Technology)Watanabe, Yukinobu*; Sadamatsu, Hiroki*; Araki, Shohei*; Nakano, Keita*; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.
EPJ Web of Conferences, 239, p.20012_1 - 20012_4, 2020/09
Times Cited Count:2 Percentile:82.33(Nuclear Science & Technology)Accelerator-based neutron sources induced by deuteron beams are attractive for study of nuclear transmutation of radioactive waste as well as radiation damage for fusion reactor materials. In the present work, we have carried out a Double Differential cross section (DDX) measurement for Li at 200 MeV in the Research Center for Nuclear Physics (RCNP), Osaka University. A deuteron beam accelerated to 200 MeV was transported to the neutron experimental hall and focused on a thin Li target. Emitted neutrons from the target were detected by two different-size EJ301 liquid organic scintillators located at two distances of 7 m and 20 m, respectively. The neutron DDXs were measured at six angles from 0 to 25
). The neutron detection efficiencies of the detectors were calculated by SCINFUL-QMD code. We will present the results of the present DDX measurement and compare them with theoretical model calculations with DEURACS and PHITS.
Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.
Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05
Times Cited Count:18 Percentile:75.44(Physics, Multidisciplinary)The structure of a neutron-rich F nucleus is investigated by a quasifree (
) knockout reaction. The sum of spectroscopic factors of
orbital is found to be 1.0
0.3. The result shows that the
O core of
F nucleus significantly differs from a free
O nucleus, and the core consists of
35%
O
, and
65% excited
O. The result shows that the
O core of
F nucleus significantly differs from a free
O nucleus. The result may infer that the addition of the
proton considerably changes the neutron structure in
F from that in
O, which could be a possible mechanism responsible for the oxygen dripline anomaly.
Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:9 Percentile:55.81(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.
Kawase, Shoichiro
Kaku Deta Nyusu (Internet), (122), p.75 - 80, 2019/02
Zirconium-93 is one of major long-lived fission products contained in high-level radioactive waste. This report introduces an experimental study of proton-and deuteron-induced spallation reactions on Zr at 105 MeV per nucleon in inverse kinematics carried out at RIKEN RI Beam Factory. The isotopic production cross sections for a wide range of isotopes including stable ones were obtained. The experimental results were compared to the PHITS calculations considering both the intra-nuclear cascade and evaporation processes.
Kawase, Shoichiro; Kimura, Atsushi; Harada, Hideo; Iwamoto, Nobuyuki; Iwamoto, Osamu; Nakamura, Shoji; Segawa, Mariko; Toh, Yosuke
no journal, ,
no abstracts in English
Sadamatsu, Hiroki*; Watanabe, Yukinobu*; Araki, Shohei*; Nakano, Keita*; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.
no journal, ,
The neutron source based on the high power deuteron accelerator has been considered to be used in application fields such as Long Lived Fission Product (LLFP) nuclear transmutation. For the design of accelerator and neutron source, we measured neutron production double differential cross sections for 200 MeV deuteron incident reactions on targets with wide range of atomic number in the Research Center of Nuclear Physics, Osaka University. In experiments, time-of-flight method with liquid organic scintillator EJ301 was applied to measure neutron energies. As a result, the structure of neutron cross section at forward angle had a broad peak at around 100 MeV. In this presentation, the experimental data including previous data for deuteron incident reaction with energies below 200 MeV will be compared with results calculated by codes, and we will discuss about the dependency of incident energies to neutron productions.
Sadamatsu, Hiroki*; Watanabe, Yukinobu*; Nakano, Keita*; Kawase, Shoichiro*; Kin, Tadahiro*; Araki, Shohei*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.
no journal, ,
Recently, the deuteron incident reaction on light nuclear targets is expected to be used as accelerator-based neutron sources for nuclear transmutation of Long-Lived Fission Products (LLFP). However, there is no experimental data to validate theoretical models at an incident energy over 102 MeV. In this work, double-differential neutron production cross sections for deuteron-induced reactions on lithium at an incident energy of 200 MeV were measured at the Research Center of Nuclear Physics (RCNP), Osaka University. Measurements were carried out at six positions every five degrees between 0 and 25
to the beam direction, and neutron energies were determined by a time of flight method. To obtain data with wide neutron energy range, two EJ301 liquid organic scintillators of different size were set. As a result, we found that experimental neutron energy spectra have a broad energy peak structure with the strong forward emission due to the deuteron break-up reaction.