Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.
JAEA-Technology 2021-016, 16 Pages, 2021/09
As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (183 layers) fuel blocks with 20% enrichment of
U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.
Kenzhina, I.*; Ishitsuka, Etsuo; Ho, H. Q.; Sakamoto, Naoki*; Okumura, Keisuke; Takemoto, Noriyuki; Chikhray, Y.*
Fusion Engineering and Design, 164, p.112181_1 - 112181_5, 2021/03
Tritium release into the primary coolant during operation of the JMTR (Japan Materials Testing Reactor) and the JRR-3M (Japan Research Reactor-3M) had been studied. It is found that the recoil release by Li(n
,
)
H reaction, which comes from a chain reaction of beryllium neutron reflectors, is dominant. To prevent tritium recoil release, the surface area of beryllium neutron reflectors needs to be minimum in the core design and/or be shielded with other material. In this paper, as the feasibility study of the tritium recoil barrier for the beryllium neutron reflectors, various materials such as Al, Ti, V, Ni, and Zr were evaluated from the viewpoint of the thickness of barriers, activities after long-term operations, and effects on the reactivities. From the results of evaluations, Al would be a suitable candidate as the tritium recoil barrier for the beryllium neutron reflectors.
Kenzhina, I.*; Ishitsuka, Etsuo; Okumura, Keisuke; Ho, H. Q.; Takemoto, Noriyuki; Chikhray, Y.*
Journal of Nuclear Science and Technology, 58(1), p.1 - 8, 2021/01
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)The sources and mechanisms for the tritium release into the primary coolant in the JMTR and the JRR-3M containing beryllium reflectors are evaluated. It is found that the recoil release from chain reaction of Be is dominant and its calculation results agree well with trends derived from the measured variation of tritium concentration in the primary coolant. It also indicates that the simple calculation method used in this study for the tritium recoil release from the beryllium reflectors can be utilized for an estimation of the tritium release into the primary coolant for a research and testing reactors containing beryllium reflectors.
Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.
JAEA-Technology 2020-008, 16 Pages, 2020/08
As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with
U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.
Ishitsuka, Etsuo; Matsunaka, Kazuaki*; Ishida, Hiroki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Kondo, Atsushi*; et al.
JAEA-Technology 2019-008, 12 Pages, 2019/07
As a summer holiday practical training 2018, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out. As a result, it is become clear that the continuous operations for about 30 years at 2 MW, about 25 years at 3 MW, about 18 years at 4 MW, about 15 years at 5 MW are possible. As an image of thermal design, the image of the nuclear battery consisting a cooling system with natural convection and a power generation system with no moving equipment is proposed. Further feasibility study to confirm the feasibility of nuclear battery will be carried out in training of next fiscal year.
Ishitsuka, Etsuo; Kenzhina, I.*; Okumura, Keisuke; Ho, H. Q.; Takemoto, Noriyuki; Chikhray, Y.*
JAEA-Technology 2018-010, 33 Pages, 2018/11
As a part of study on the mechanism of tritium release to the primary coolant in research and testing reactors, tritium recoil release rate from Li and U impurities in the neutron reflector made by beryllium, aluminum and graphite were calculated by PHITS code. On the other hand, the tritium production from Li and U impurities in beryllium neutron reflectors for JMTR and JRR-3M were calculated by MCNP6 and ORIGEN2 code. By using both results, the amount of recoiled tritium from beryllium neutron reflectors were estimated. It is clear that the amount of recoiled tritium from Li and U impurities in beryllium neutron reflectors are negligible, and 2 and 5 orders smaller than that from beryllium itself, respectively.
Ishitsuka, Etsuo; Kenzhina, I. E.*
Physical Sciences and Technology, 4(1), p.27 - 33, 2018/06
Increase of tritium concentration in the primary coolant for the research and testing reactors during reactor operation had been reported. To clarify the tritium sources, a curve of the tritium release rate into the primary coolant for the JMTR and the JRR-3M are evaluated. It is also observed that the amount of released tritium is lower in the case of new beryllium components installation, and increases with the reactor operating cycle. These results show the beryllium components in core strongly affect to the tritium release into the primary coolant. As a result, the tritium release rate is related with produced Li by (n,
) reaction from
Be, and evaluation results of tritium release curve are shown as the dominant source of tritium release into the primary coolant for the JMTR and the JRR-3M are beryllium components. Scattering of the tritium release rate with irradiation time were observed, and this phenomena in the JMTR occurred in earlier time than that of the JRR-3M.
Chikhray, Y.*; Kulsartov, T.*; Shestakov, V.*; Kenzhina, I.*; Askerbekov, S.*; Sumita, Junya; Ueta, Shohei; Shibata, Taiju; Sakaba, Nariaki; Abdullin, Kh.*; et al.
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.572 - 577, 2016/11
Application of SiC as corrosion-resistive coating over graphite remains important task for HTGR. This study presents the results of chemical interaction of the SiC gradient coating over the high-density IG-110 graphite with water vapor in the temperature up to 1673 K. The experiments at 100 Pa of water vapor showed that the passive reaction caused to form SiO film on the surface of SiC coating. Active corrosion of SiC in 1Pa of water vapor leads to deposits of various carbon composites on its surface.
Ishitsuka, Etsuo; Kenzhina, I. E.*; Okumura, Keisuke; Takemoto, Noriyuki; Chikhray, Y.*
JAEA-Technology 2016-022, 35 Pages, 2016/10
As a part of study on the mechanism of tritium release to the primary coolant in research and testing reactors, the calculation methods by PHITS code is studied to evaluate the recoil tritium release rate from beryllium core components. Calculations using neutron and triton sources were compared, and it is clear that the tritium release rates in both cases show similar values. However, the calculation speed for the triton source cases is two orders faster than that for the neutron source case. It is also clear that the calculation up to history number per unit volume of 210
(cm
) is necessary to determine the recoil tritium release rate of two effective digits precision. Furthermore, the relationship between the beryllium shape and recoil tritium release rate using the triton sources was studied. Recoil tritium release rate showed linear relation to the surface area per volume of beryllium, and the recoil tritium release rate showed about half of the conventional equation value.
Ishitsuka, Etsuo; Motohashi, Jun; Hanawa, Yoshio; Komeda, Masao; Watahiki, Shunsuke; Mukanova, A.*; Kenzhina, I. E.*; Chikhray, Y.*
JAEA-Technology 2014-025, 77 Pages, 2014/08
It has been shown that tritium concentration in the primary coolant of the JMTR and JRR-3M increases during its operation. In this report, to clarify the tritium sources, the tritium release rate into the primary coolant in each operation cycle for the JMTR, JRR-3M and JRR-4 was evaluated. As a result, the tritium release rate is 8 Bq/Wd in the JRR-4, which has not the beryllium core components installed, and no increase in the tritium concentration during reactor operation is observed. In contrast, the tritium release rate is about 10
95 and 60
140 Bq/Wd in the JRR-3M and JMTR respectively, which cores contain beryllium components, and where the tritium content increases while reactor operates. It is also observed that the amount of released tritium is lower in the case of new beryllium components installation, and increases with the reactor operating cycle.
Kenzhina, I. E.*; Ishitsuka, Etsuo; Okumura, Keisuke; Takemoto, Noriyuki; Mukanova, A.*; Chikhray, Y.*
no journal, ,
Increase of tritium concentration in the primary coolant for research and testing reactors during reactor operation had been reported. To clarify the tritium sources, a curve of tritium release rate into the primary coolant for the JMTR and JRR-3M are evaluated. As a result, the tritium release rate is related with produced Li by (n,
) reaction from
Be, and evaluation results of tritium release curve are shown as the dominant source of tritium release into the primary coolant for the JMTR and JRR-3M are beryllium components. Scattering of the tritium release rate with irradiation time were observed, and this phenomena in the JMTR occurred in earlier time than that of the JRR-3M.
Ishitsuka, Etsuo; Kenzhina, I.*; Okumura, Keisuke; Ho, H. Q.; Takemoto, Noriyuki; Chikhray, Y.*
no journal, ,
An increase of tritium concentration in the primary coolant for JMTR and JRR-3M revealed that the recoil tritium release from the beryllium reflector is dominant.