Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 49

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a D$$_2$$O/H$$_2$$O vapor generator for contrast-variation neutron scattering

Arima-Osonoi, Hiroshi*; Takata, Shinichi; Kasai, Satoshi*; Ouchi, Keiichi*; Morikawa, Toshiaki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Iwase, Hiroki*; Hiroi, Kosuke; et al.

Journal of Applied Crystallography, 56(6), p.1802 - 1812, 2023/12

Journal Articles

Thinning behavior of solid boron carbide immersed in molten stainless steel for core disruptive accident of sodium-cooled fast reactor

Emura, Yuki; Takai, Toshihide; Kikuchi, Shin; Kamiyama, Kenji; Yamano, Hidemasa; Yokoyama, Hiroki*; Sakamoto, Kan*

Journal of Nuclear Science and Technology, 10 Pages, 2023/00

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Thermally altered subsurface material of asteroid (162173) Ryugu

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.

Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03

 Times Cited Count:30 Percentile:96.87(Astronomy & Astrophysics)

Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 $$^{circ}$$C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 $$^{circ}$$C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.

Journal Articles

Origin of magnetovolume effect in a cobaltite

Miao, P.*; Tan, Z.*; Lee, S. H.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Yonemura, Masao*; Koda, Akihiro*; Komatsu, Kazuki*; Machida, Shinichi*; Sano, Asami; et al.

Physical Review B, 103(9), p.094302_1 - 094302_18, 2021/03

 Times Cited Count:1 Percentile:18.63(Materials Science, Multidisciplinary)

The layered perovskite PrBaCo$$_{2}$$O$$_{5.5}$$ demonstrates a strong negative thermal expansion (NTE) which holds potential for being fabricated into composites with zero thermal expansion. The NTE was found to be intimately associated with the spontaneous magnetic ordering, known as magneto-volume effect (MVE). Here we report with compelling evidences that the continuous-like MVE in PrBaCo$$_{2}$$O$$_{5.5}$$ is intrinsically of discontinuous character, originating from an magnetoelectric transition from an antiferromagnetic insulating large-volume (AFILV) phase to a ferromagnetic less-insulating small-volume (FLISV) phase. Furthermore, the magnetoelectric effect (ME) shows high sensitivity to multiple external stimuli such as temperature, carrier doping, hydrostatic pressure, magnetic field etc. In contrast to the well-known ME such as colossal magnetoresistance and multi-ferroic effect which involve symmetry breaking of crystal structure, the ME in the cobaltite is purely isostructural. Our discovery provides a new path way to realizing the ME as well as the NTE, which may find applications in new techniques.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; et al.

JAEA-Review 2018-028, 120 Pages, 2019/02

JAEA-Review-2018-028.pdf:2.69MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2017. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2016

Nakano, Masanao; Fujita, Hiroki; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-037, 119 Pages, 2018/03

JAEA-Review-2017-037.pdf:2.58MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2016. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2015

Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Nagaoka, Mika; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-001, 115 Pages, 2017/03

JAEA-Review-2017-001.pdf:3.57MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2015. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Mineralogical characterization of radioactive particles from Fukushima soil using $$mu$$-XRD with synchrotron radiation

Motai, Satoko*; Mukai, Hiroki*; Watanuki, Tetsu; Owada, Kenji; Fukuda, Tatsuo; Machida, Akihiko; Kuramata, Chisaki*; Kikuchi, Ryosuke*; Yaita, Tsuyoshi; Kogure, Toshihiro*

Journal of Mineralogical and Petrological Sciences, 111(5), p.305 - 312, 2016/10

 Times Cited Count:16 Percentile:52.27(Mineralogy)

no abstracts in English

Journal Articles

Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

Okumura, Yoshikazu; Gobin, R.*; Knaster, J.*; Heidinger, R.*; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; et al.

Review of Scientific Instruments, 87(2), p.02A739_1 - 02A739_3, 2016/02

 Times Cited Count:7 Percentile:35.45(Instruments & Instrumentation)

IFMIF is an accelerator based neutron facility having two set of linear accelerators each producing 125mA/CW deuterium ion beams (250mA in total) at 40MeV. The LIPAc (Linear IFMIF Prototype Accelerator) being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac, whose target is to demonstrate 125mA/CW deuterium ion beam acceleration up to 9MeV. The injector has been developed in CEA Saclay and already demonstrated 140mA/100keV deuterium beam. The injector was disassembled and delivered to the International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, and the commissioning has started after its reassembly 2014; the first beam production has been achieved in November 2014. Up to now, 100keV/120mA/CW hydrogen ion beam has been produced with a low beam emittance of 0.2 $$pi$$.mm.mrad (rms, normalized).

Journal Articles

Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

Mukai, Hiroki*; Hirose, Atsushi*; Motai, Satoko*; Kikuchi, Ryosuke*; Tanoi, Keitaro*; Nakanishi, Tomoko*; Yaita, Tsuyoshi; Kogure, Toshihiro*

Scientific Reports (Internet), 6, p.21543_1 - 21543_7, 2016/02

 Times Cited Count:126 Percentile:96.66(Multidisciplinary Sciences)

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2014

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2015-030, 115 Pages, 2015/12

JAEA-Review-2015-030.pdf:25.28MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2014. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Progress of the high current Prototype Accelerator for IFMIF/EVEDA

Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09

Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 $$pi$$.mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2013

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Goto, Ichiro*; Kibe, Satoshi*; et al.

JAEA-Review 2014-040, 115 Pages, 2015/01

JAEA-Review-2014-040.pdf:4.26MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2013. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Present status of J-PARC linac

Oguri, Hidetomo; Hasegawa, Kazuo; Ito, Takashi; Chishiro, Etsuji; Hirano, Koichiro; Morishita, Takatoshi; Shinozaki, Shinichi; Ao, Hiroyuki; Okoshi, Kiyonori; Kondo, Yasuhiro; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.389 - 393, 2014/10

no abstracts in English

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2012

Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Inoue, Kazumi; Yoshii, Hideki; Otani, Kazunori*; Hiyama, Yoshinori*; et al.

JAEA-Review 2013-041, 115 Pages, 2014/01

JAEA-Review-2013-041.pdf:19.01MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, and the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), this report describes the effluent control results of liquid waste discharged from the JAEA's Nuclear Fuel Cycle Engineering Laboratories in the fiscal year 2012, from 1st April 2012 to 31st March 2013. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other facilities were much lower than the authorized limits of the above regulations.

Journal Articles

Tensile mechanical properties of a stainless steel irradiated up to 19 dpa in the Swiss spallation neutron source

Saito, Shigeru; Kikuchi, Kenji*; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Dai, Y.*

Journal of Nuclear Materials, 431(1-3), p.44 - 51, 2012/12

 Times Cited Count:2 Percentile:17.83(Materials Science, Multidisciplinary)

To evaluate the lifetime of the beam window of an accelerator-driven transmutation system (ADS), post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out. The specimens tested in this study were made from the austenitic steel JPCA (Japan primary candidate alloy). The specimens were irradiated at SINQ Target 4 (STIP-II) with high-energy protons and spallation neutrons. The irradiation conditions were as follows: the proton energy was 580 MeV, irradiation temperatures ranged from 100 to 430$$^{circ}$$C, and displacement damage levels ranged from 7.1 to 19.5 dpa. Tensile tests were performed in air at room temperature (R.T.), 250$$^{circ}$$C and 350$$^{circ}$$C. Fracture surface observation after the tests was done by SEM (Scanning electron microscope). Results of the tensile tests performed at R.T. showed the extra hardening of JPCA at higher dose compared to the fission neutron irradiated data. At the higher temperatures, 250$$^{circ}$$C and 350$$^{circ}$$C, the extra hardening was not observed. Degradation of ductility bottomed around 10 dpa, and specimens kept their ductility until 19.5 dpa. All specimens fractured in ductile manner. The result from a microstructure observation on a specimen irradiated to 19.3 dpa at 420$$^{circ}$$C indicates that some agglomeration of bubbles on grain boundaries was observed in the specimen irradiated to 19.3 dpa at 420$$^{circ}$$C. However the tensile specimen irradiated up to 18.4 dpa at 425$$^{circ}$$C still exhibited little loss of ductility. Since He/dpa was very high on SINQ target irradiations, the formation of highly dense small bubbles in the matrix consequently avoided the accumulation of He on grain boundaries, which might have resulted in avoiding grain boundary embrittlement.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2010

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Hiyama, Yoshinori; Yoshii, Hideki*; Kikuchi, Masaaki*; Otani, Kazunori*; Goto, Ichiro*

JAEA-Review 2012-006, 114 Pages, 2012/03

JAEA-Review-2012-006.pdf:3.36MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, and the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and byelaw of Ibaraki prefecture), this report describes the effluent control results of liquid waste discharged from the JAEA's Nuclear Fuel Cycle Engineering Laboratories in the fiscal year 2010, from 1st April 2010 to 31st March 2011. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other facilities were much lower than the authorized limits of the above regulations.

Journal Articles

Analysis of trace elements in erythrocytes obtained from dialysis patients using in-air micro PIXE

Kikuchi, Hiroki*; Nagamine, Takeaki*; Tokita, Yoshiharu*; Sato, Takahiro; Kamiya, Tomihiro

JAEA-Review 2011-043, JAEA Takasaki Annual Report 2010, P. 88, 2012/01

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2009

Sumiya, Shuichi; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Hiyama, Yoshinori; Yoshii, Hideki*; Fujii, Jun*; Kikuchi, Masaaki*; et al.

JAEA-Review 2010-072, 115 Pages, 2011/02

JAEA-Review-2010-072.pdf:2.1MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, and the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and byelaw of Ibaraki prefecture), this report describes the effluent control results of liquid waste discharged from the JAEA's Nuclear Fuel Cycle Engineering Laboratories in the fiscal year 2009, from 1st April 2009 to 31st March 2010. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other facilities were much lower than the authorized limits of the above regulations.

49 (Records 1-20 displayed on this page)