Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 788

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comparative study of the multistep thermal dehydration/decomposition of geopolymer pastes prepared using different active fillers

Shindo, Manami*; Ueoku, Aya*; Okamura, Wakana*; Kikuchi, Shin; Yamazaki, Atsushi*; Koga, Nobuyoshi*

Thermochimica Acta, 749, p.180021_1 - 180021_14, 2025/07

 Times Cited Count:0 Percentile:0.00(Thermodynamics)

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2023

Kokubun, Yuji; Hosomi, Kenji; Seya, Natsumi; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Hasegawa, Ryo; Kubota, Tomohiro; Hirao, Moe; Iizawa, Shogo; et al.

JAEA-Review 2024-053, 116 Pages, 2025/03

JAEA-Review-2024-053.pdf:3.26MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution prevention act, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2023. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Phase transitions of sodium peroxide investigated by DSC

Kikuchi, Shin; Koga, Nobuyoshi*

Journal of Thermal Analysis and Calorimetry, 150(1), p.585 - 590, 2025/01

 Times Cited Count:0 Percentile:0.00(Thermodynamics)

Journal Articles

Neutron flux and energy resolution of direct-geometry disk-chopper spectrometer AMATERAS at J-PARC

Nirei, Masami; Kofu, Maiko; Nakajima, Kenji; Kikuchi, Tatsuya*; Kawamura, Seiko; Murai, Naoki; Harada, Masahide; Inamura, Yasuhiro

Journal of Neutron Research, 26(2-3), p.75 - 82, 2024/09

Journal Articles

Formation behavior of gaseous iodine from sodium iodide under SFR severe accidental condition

Kikuchi, Shin; Kondo, Toshiki; Doi, Daisuke; Seino, Hiroshi; Ogawa, Kengo*; Nakagawa, Takeshi*

Proceedings of 14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation, and Safety (NTHOS-14) (Internet), 12 Pages, 2024/08

Journal Articles

Multistep kinetics of the thermal dehydration/decomposition of metakaolin-based geopolymer paste

Shindo, Manami*; Ueoku, Aya*; Okamura, Wakana*; Kikuchi, Shin; Yamazaki, Atsushi*; Koga, Nobuyoshi*

Thermochimica Acta, 738, p.179801_1 - 179801_12, 2024/08

 Times Cited Count:1 Percentile:34.56(Thermodynamics)

Journal Articles

Thinning behavior of solid boron carbide immersed in molten stainless steel for core disruptive accident of sodium-cooled fast reactor

Emura, Yuki; Takai, Toshihide; Kikuchi, Shin; Kamiyama, Kenji; Yamano, Hidemasa; Yokoyama, Hiroki*; Sakamoto, Kan*

Journal of Nuclear Science and Technology, 61(7), p.911 - 920, 2024/07

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Development of safety design technologies for sodium-cooled fast reactor coupled to thermal energy storage system with sodium-molten salt heat exchanger, 3; Reaction on sodium-nitrate molten salt

Kikuchi, Shin; Sato, Rika; Kondo, Toshiki; Umeda, Ryota; Yamano, Hidemasa

Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2024/06

no abstracts in English

Journal Articles

Development of safety design technologies for sodium-cooled fast reactor coupled to thermal energy storage system with sodium-molten salt heat exchanger, 1; Overview and Consideration on tube failure

Yamano, Hidemasa; Takano, Kazuya; Kurisaka, Kenichi; Kikuchi, Shin; Kondo, Toshiki; Umeda, Ryota; Sato, Rika; Shirakura, Shota*

Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2024/06

This project studies investigation on safety design guideline and risk assessment technology for sodium-cooled fast reactor with the molten-salt heat storage system, development of evaluation method for heat transferring performance between sodium and molten-salt and improvement of the performance, and evaluation of chemical reaction characteristic between sodium and molten-salt and improvement of its safety. This paper describes the effect of sodium-molten salt heat transfer tube failure in addition to the project overview and progress.

Journal Articles

Development of a design optimization framework for sodium-cooled fast reactors, 3; Development of a prototype with user interface

Doda, Norihiro; Nakamine, Yoshiaki*; Yoshimura, Kazuo; Kuwagaki, Kazuki; Hamase, Erina; Yokoyama, Kenji; Kikuchi, Norihiro; Mori, Takero; Hashidate, Ryuta; Tanaka, Masaaki

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 29, 6 Pages, 2024/06

As a part of the development of the "Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle (ARKADIA)" to utilize the knowledge obtained through the sodium-cooled fast reactors (SFRs) and combine the latest numerical simulation technologies, ARKADIA-Design is being developed to support the optimization of SFRs in the conceptual design stage. ARKADIA-Design consists of three systems of Virtual Plant Life System (VLS), Enhanced and AI-aided optimization System (EAS), and Knowledge Management System (KMS). A design optimization framework controls the linkage among the three systems through the interfaces in each system. In this study, we have developed a prototype of the framework for core design optimization using the coupled analysis functions in VLS and optimization control function in the linkage of EAS and VLS to investigate the applicability of the framework to the SFR design optimization process.

Journal Articles

Production rates of long-lived radionuclides $$^{10}$$Be and $$^{26}$$Al under direct muon-induced spallation in granite quartz and its implications for past high-energy cosmic ray fluxes

Sakurai, Hirohisa*; Kurebayashi, Yutaka*; Suzuki, Soichiro*; Horiuchi, Kazuho*; Takahashi, Yui*; Doshita, Norihiro*; Kikuchi, Satoshi*; Tokanai, Fuyuki*; Iwata, Naoyoshi*; Tajima, Yasushi*; et al.

Physical Review D, 109(10), p.102005_1 - 102005_18, 2024/05

 Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)

Secular variations of galactic cosmic rays (GCRs) are inseparably associated with the galactic activities and should reflect the environments of the local galactic magnetic field, interstellar clouds, and nearby supernova remnants. The high-energy muons produced in the atmosphere by high-energy GCRs can penetrate deep underground and generate radioisotopes in the rock. As long lived radionuclides such as $$^{10}$$Be and $$^{26}$$Al have been accumulating in these rocks, concentrations of $$^{10}$$Be and $$^{26}$$Al can be used to estimate the long-term variations in high-energy muon yields, corresponding to those in the high-energy GCRs over a few million years. This study measured the production cross sections for muon induced $$^{10}$$Be and $$^{26}$$Al by irradiating positive muons with the momentum of 160 GeV/c on the synthetic silica plates and the granite core at the COMPASS experiment line in CERN SPS. In addition, it the contributions of the direct muon spallation reaction and the nuclear reactions by muon-induced particles on the production of long lived radionuclides in the rocks were clarified.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2022

Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Nagaoka, Mika; Koike, Yuko; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.

JAEA-Review 2023-052, 118 Pages, 2024/03

JAEA-Review-2023-052.pdf:3.67MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2022. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Thermophysical properties of dense molten Al$$_{2}$$O$$_{3}$$ determined by aerodynamic levitation

Sun, Y.*; Takatani, Tomoya*; Muta, Hiroaki*; Fujieda, Shun*; Kondo, Toshiki; Kikuchi, Shin; Kargl, F.*; Oishi, Yuji*

International Journal of Thermophysics, 45(1), p.11_1 - 11_19, 2024/01

 Times Cited Count:1 Percentile:35.22(Thermodynamics)

no abstracts in English

Journal Articles

Development of a D$$_2$$O/H$$_2$$O vapor generator for contrast-variation neutron scattering

Arima-Osonoi, Hiroshi*; Takata, Shinichi; Kasai, Satoshi*; Ouchi, Keiichi*; Morikawa, Toshiaki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Iwase, Hiroki*; Hiroi, Kosuke; et al.

Journal of Applied Crystallography, 56(6), p.1802 - 1812, 2023/12

 Times Cited Count:6 Percentile:81.06(Chemistry, Multidisciplinary)

Journal Articles

Study on criticality safety control of fuel debris for validation of methodology applied to the safety regulation

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Yamane, Yuichi; Izawa, Kazuhiko; Nagaya, Yasunobu; Kikuchi, Takeo; et al.

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 6 Pages, 2023/10

To remove and store safely the fuel debris generated by the severe accident of the Fukushima Daiichi Nuclear Power Station in 2011 is one of the most important and challenging topics for decommissioning of the damaged reactors in Fukushima. To validate the adopted method for the evaluation of criticality safety control of the fuel debris through comparison with the experimental data obtained by the criticality experiments, the Nuclear Regulation Authority (NRA) of Japan funds a research and development project which was entrusted to the Nuclear Safety Research Center (NSRC) of Japan Atomic Energy Agency (JAEA) from 2014. In this project, JAEA has been conducting such activities as i) comprehensive computation of the criticality characteristics of the fuel debris and making database (criticality map of the fuel debris), ii) development of new continuous energy Monte Carlo code, iii) evaluation of criticality accident and iv) modification of the critical assembly STACY for the experiments for validation of criticality safety control methodology. After the last ICNC2019, the project has the substantial progress in the modification of STACY which will start officially operation from May 2024 and the development of the Monte Carlo Code "Solomon" suitable for the criticality calculation for materials having spatially random distribution complies with the power spectrum. We present the whole picture of this research and development project and status of each technical topics in the session.

Journal Articles

Development of safety design technologies for sodium-cooled fast reactor coupled to thermal energy storage system with sodium-molten salt heat exchanger; Project overview

Yamano, Hidemasa; Kurisaka, Kenichi; Takano, Kazuya; Kikuchi, Shin; Kondo, Toshiki; Umeda, Ryota; Shirakura, Shota*

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

This project studies investigation on safety design guideline and risk assessment technology for sodium-cooled fast reactor with the molten-salt heat storage system, development of evaluation method for heat transferring performance between sodium and molten-salt and improvement of the performance, and evaluation of chemical reaction characteristic between sodium and molten-salt and improvement of its safety. The project overview is presented in this report.

Journal Articles

Magnetic excitation in the $$S$$=1/2 Ising-like antiferromagnetic chain CsCoCl$$_{3}$$ in longitudinal magnetic fields studied by high-field ESR measurements

Kimura, Shojiro*; Onishi, Hiroaki; Okunishi, Koichi*; Akaki, Mitsuru*; Narumi, Yasuo*; Hagiwara, Masayuki*; Kindo, Koichi*; Kikuchi, Hikomitsu*

Journal of the Physical Society of Japan, 92(9), p.094701_1 - 094701_9, 2023/09

 Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)

Journal Articles

Validation practices of multi-physics core performance analysis in an advanced reactor design study

Doda, Norihiro; Kato, Shinya; Hamase, Erina; Kuwagaki, Kazuki; Kikuchi, Norihiro; Ohgama, Kazuya; Yoshimura, Kazuo; Yoshikawa, Ryuji; Yokoyama, Kenji; Uwaba, Tomoyuki; et al.

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.946 - 959, 2023/08

An innovative design system named ARKADIA is being developed to realize the design of advanced nuclear reactors as safe, economical, and sustainable carbon-free energy sources. This paper focuses on ARKADIA-Design for design studies as a part of ARKADIA and introduces representative verification methods for numerical analysis methods of the core design. ARKADIA-Design performs core performance analysis of sodium-cooled fast reactors using a multiphysics approach that combines neutronics, thermal-hydraulics, core mechanics, and fuel pin behavior analysis codes. To confirm the validity of these analysis codes, validation matrices are identified with reference to experimental data and reliable numerical analysis results. The analysis models in these codes and the representative practices for the validation matrices are described.

Journal Articles

Thermophysical properties of molten (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$ measured by aerodynamic levitation

Kondo, Toshiki; Toda, Taro*; Takeuchi, Junichi*; Kikuchi, Shin; Kargl, F.*; Muta, Hiroaki*; Oishi, Yuji*

High Temperatures-High Pressures, 52(3-4), p.307 - 321, 2023/06

 Times Cited Count:0 Percentile:0.00(Thermodynamics)

In order to establish an evaluation method/numerical simulation for nuclear reactor safety under severe accidental conditions, it is necessary to obtain the physical properties, especially fluidity of the relevant molten materials at very high temperatures. In this study, thermophysical properties such as density and viscosity were obtained for (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$, which is a representative composition in the early stage of severe accident. (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$ is produced by the contact between the molten oxide of steel, which is the main component of the reactor, and SiO$$_{2}$$, which is the main component of concrete. As a result, the physical properties of the (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$ mixture were almost the same as those of Fe$$_{2}$$O$$_{3}$$ obtained in previous studies, and it could be concluded that a small amount of SiO$$_{2}$$ (about 5 mol.%) did not significantly affect the fluidity of Fe$$_{2}$$O$$_{3}$$.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2021

Nakada, Akira; Kanai, Katsuta; Kokubun, Yuji; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei*; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; et al.

JAEA-Review 2022-079, 116 Pages, 2023/03

JAEA-Review-2022-079.pdf:2.77MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2021. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

788 (Records 1-20 displayed on this page)