Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 126

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2022

Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Nagaoka, Mika; Koike, Yuko; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.

JAEA-Review 2023-052, 118 Pages, 2024/03

JAEA-Review-2023-052.pdf:3.67MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2022. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Thermophysical properties of dense molten Al$$_{2}$$O$$_{3}$$ determined by aerodynamic levitation

Sun, Y.*; Takatani, Tomoya*; Muta, Hiroaki*; Fujieda, Shun*; Kondo, Toshiki; Kikuchi, Shin; Kargl, F.*; Oishi, Yuji*

International Journal of Thermophysics, 45(1), p.11_1 - 11_19, 2024/01

 Times Cited Count:0 Percentile:0.07(Thermodynamics)

no abstracts in English

Journal Articles

Validation practices of multi-physics core performance analysis in an advanced reactor design study

Doda, Norihiro; Kato, Shinya; Hamase, Erina; Kuwagaki, Kazuki; Kikuchi, Norihiro; Ohgama, Kazuya; Yoshimura, Kazuo; Yoshikawa, Ryuji; Yokoyama, Kenji; Uwaba, Tomoyuki; et al.

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.946 - 959, 2023/08

An innovative design system named ARKADIA is being developed to realize the design of advanced nuclear reactors as safe, economical, and sustainable carbon-free energy sources. This paper focuses on ARKADIA-Design for design studies as a part of ARKADIA and introduces representative verification methods for numerical analysis methods of the core design. ARKADIA-Design performs core performance analysis of sodium-cooled fast reactors using a multiphysics approach that combines neutronics, thermal-hydraulics, core mechanics, and fuel pin behavior analysis codes. To confirm the validity of these analysis codes, validation matrices are identified with reference to experimental data and reliable numerical analysis results. The analysis models in these codes and the representative practices for the validation matrices are described.

Journal Articles

Thermophysical properties of molten (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$ measured by aerodynamic levitation

Kondo, Toshiki; Toda, Taro*; Takeuchi, Junichi*; Kikuchi, Shin; Kargl, F.*; Muta, Hiroaki*; Oishi, Yuji*

High Temperatures-High Pressures, 52(3-4), p.307 - 321, 2023/06

 Times Cited Count:0 Percentile:0.02(Thermodynamics)

In order to establish an evaluation method/numerical simulation for nuclear reactor safety under severe accidental conditions, it is necessary to obtain the physical properties, especially fluidity of the relevant molten materials at very high temperatures. In this study, thermophysical properties such as density and viscosity were obtained for (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$, which is a representative composition in the early stage of severe accident. (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$ is produced by the contact between the molten oxide of steel, which is the main component of the reactor, and SiO$$_{2}$$, which is the main component of concrete. As a result, the physical properties of the (Fe$$_{2}$$O$$_{3}$$)$$_{0.95}$$-(SiO$$_{2}$$)$$_{0.05}$$ mixture were almost the same as those of Fe$$_{2}$$O$$_{3}$$ obtained in previous studies, and it could be concluded that a small amount of SiO$$_{2}$$ (about 5 mol.%) did not significantly affect the fluidity of Fe$$_{2}$$O$$_{3}$$.

Journal Articles

Validation study of thermal-hydraulics analysis code SPIRAL to a large-scale wire-wrapped fuel assembly sodium test at a low Reynolds number flow regime

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Gerschenfeld, A.*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

Removal of core decay heat by utilizing natural circulation is expected as a significant measure to enhance the safety of sodium-cooled fast reactors (SFRs). Accurate evaluation of the temperature distribution in the fuel assembly (FA) at the low Re regime in natural circulation operation is demanded. A detailed thermal-hydraulics analysis code named SPIRAL has been developed to clarify thermal-hydraulic phenomena in the FA at various operation conditions. In this study, SPIRAL with the hybrid turbulence model was applied to analyze a large-scale fuel assembly experiment of a 91-pin bundle for two cases at the mixed and the natural convection conditions respectively in low Re regime with heat transfer from outside of the FA. The applicability of the SPIRAL to the thermal-hydraulics evaluation of FA at mixed and natural convection conditions was confirmed by the comparisons of temperatures predicted by SPIRAL with those measured in the experiment.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2021

Nakada, Akira; Kanai, Katsuta; Kokubun, Yuji; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei*; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; et al.

JAEA-Review 2022-079, 116 Pages, 2023/03

JAEA-Review-2022-079.pdf:2.77MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2021. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Thermophysical properties of molten FeO$$_{1.5}$$, (FeO$$_{1.5}$$)$$_{0.86}$$-(ZrO$$_{2}$$)$$_{0.14}$$ and (FeO$$_{1.5}$$)$$_{0.86}$$-(UO$$_{2}$$)$$_{0.14}$$

Kondo, Toshiki; Toda, Taro*; Takeuchi, Junichi*; Kargl, F.*; Kikuchi, Shin; Muta, Hiroaki*; Oishi, Yuji*

Journal of Nuclear Science and Technology, 59(9), p.1139 - 1148, 2022/09

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Investigation of applicability of subchannel analysis code ASFRE on thermal hydraulics analysis in fuel assembly with inner duct structure in sodium cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 8 Pages, 2021/08

In the design study of an advanced sodium-cooled fast reactor (Advanced-SFR) in JAEA, the use of a specific fuel assembly (FA) with an inner duct structure called FAIDUS has been investigated to enhance safety of Advanced-SFR. Due to the asymmetric layout of fuel rods by the inner duct, it is necessary to estimate the temperature distribution to confirm feasibility of FAIDUS. For the FAIDUS, confirmation of validity of the numerical results by a subchannel analysis code named ASFRE was not enough because the reference data on the thermal hydraulics in FAIDUS have not been obtained by the mock-up experiment, yet. Therefore, the code-to-code comparisons with numerical results of ASFRE and those of a CFD code named SPIRAL was conducted. The applicability of ASFRE was indicated through the confirmation of the consistency of mechanism of the specific temperature and velocity distributions appearing around the inner duct between the numerical results by ASFRE and those by SPIRAL.

Journal Articles

Insight into Kondo screening in the intermediate-valence compound SmOs$$_4$$Sb$$_{12}$$ uncovered by soft X-ray magnetic circular dichroism

Saito, Yuji; Fujiwara, Hidenori*; Yasui, Akira*; Kadono, Toshiharu*; Sugawara, Hitoshi*; Kikuchi, Daisuke*; Sato, Hideyuki*; Suga, Shigemasa*; Yamasaki, Atsushi*; Sekiyama, Akira*; et al.

Physical Review B, 102(16), p.165152_1 - 165152_8, 2020/10

 Times Cited Count:1 Percentile:6.04(Materials Science, Multidisciplinary)

Journal Articles

Validation study of finite element thermal-hydraulics analysis code SPIRAL to a large-scale wire-wrapped fuel assembly at low flow rate condition

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Gerschenfeld, A.*

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.73 - 80, 2020/10

A finite element thermal-hydraulics simulation code SPIRAL has been developed in Japan Atomic Energy Agency (JAEA) to analyze the detailed thermal-hydraulics phenomena in a fuel assembly (FA) of Sodium-cooled Fast Reactors (SFRs). The numerical simulation of a large-scale sodium test for 91-pin bundle (GR91) at low flow rate condition was performed for the validation of SPIRAL with the hybrid k-e turbulence model to take into account the low Re number effect near the wall in the flow and temperature fields. Through the numerical simulation, specific velocity distribution affected by the buoyancy force was shown on the top of the heated region and the temperature distribution predicted by SPIRAL agreed with that measured in the experiment and the applicability of the SPIRAL to thermal-hydraulic evaluation of large-scale fuel assembly at low flow rate condition was indicated.

JAEA Reports

Technical report on the development of finance and contract information system Ver.4

Kimura, Hideo; Hikasa, Naoki*; Kugenuma, Yuji*; Doi, Toshiharu*; Kikuchi, Yoshitaka*

JAEA-Technology 2019-004, 25 Pages, 2019/05

JAEA-Technology-2019-004.pdf:3.02MB

JAEA has developed the "Financial and contract information system" for effective and efficient accomplishment of the mission-critical tasks. Because the development of the next system was necessary with the end in the support time limit of the current system, we carried out the development of the next system in 2018. While the addition of the electronic approval function or the adoption of the latest package software largely performed a functional enhancement until now by applying distributed systems construction technique based on the separation procurement that we devised progressively, in development, we extremely realized procurement with the low cost.

Journal Articles

Subchannel analysis of thermal-hydraulics in a fuel assembly with inner duct structure of a sodium-cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Journal of Nuclear Engineering and Radiation Science, 5(2), p.021001_1 - 021001_12, 2019/04

In the design study of an advanced loop-type sodium-cooled fast reactor in Japan, a specific fuel assembly (FA) named FAIDUS (Fuel Assembly with Inner DUct Structure) has been considered as one of the measures to enhance safety of the reactor during the core disruptive accident. In this study, thermal-hydraulics in FAIDUS was investigated with the in-house subchannel analysis code named ASFRE. Before the application to FAIDUS, applicability of ASFRE to FAs was confirmed through the numerical simulations for the experiments of simulated FA. Through the comparisons between the numerical results of thermal-hydraulic analyses of FAIDUS and a typical FA without the inner duct, it was indicated that significant asymmetric temperature distribution would not occur in FAIDUS at both high and low flow rate conditions.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; et al.

JAEA-Review 2018-028, 120 Pages, 2019/02

JAEA-Review-2018-028.pdf:2.69MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2017. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Magnetic, thermal, and neutron diffraction studies of a coordination polymer; bis(glycolato)cobalt(II)

Nakane, Tomohiro*; Yoneyama, Shota*; Kodama, Takeshi*; Kikuchi, Koichi*; Nakao, Akiko*; Ohara, Takashi; Higashinaka, Ryuji*; Matsuda, Tatsuma*; Aoki, Yuji*; Fujita, Wataru*

Dalton Transactions (Internet), 48(1), p.333 - 338, 2019/01

 Times Cited Count:2 Percentile:11.34(Chemistry, Inorganic & Nuclear)

Journal Articles

Development of numerical analysis method for core thermal-hydraulics during natural circulation decay heat removal in SFR, 1; Validation of ASFRE code in estimation of radial heat transfer phenomena

Kikuchi, Norihiro; Doda, Norihiro; Hashimoto, Akihiko*; Yoshikawa, Ryuji; Tanaka, Masaaki; Ohshima, Hiroyuki

Dai-23-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 5 Pages, 2018/06

For the thermal-hydraulic design regarding a fuel assembly of sodium-cooled fast reactors, a subchannel analysis code ASFRE has been developed by JAEA. ASFRE was applied to numerical simulations of several kinds of water and sodium experiments as its validation studies and it was confirmed that pressure drops and temperature distributions measured in the experiments can be well reproduced. To enhance safety of sodium-cooled fast reactor, it is required to evaluate thermal-hydraulics in a core during decay heat removal by natural circulation. It is necessary to estimate radial heat transfer phenomena between fuel assemblies. In this study, a numerical simulation of a 37-pin bundle sodium experiment with radial heat flux was carried out and it was confirmed that ASFRE can be qualitatively reproduced temperature distributions in a fuel assembly affected by radial heat transfer.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2016

Nakano, Masanao; Fujita, Hiroki; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-037, 119 Pages, 2018/03

JAEA-Review-2017-037.pdf:2.58MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2016. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Thermal-hydraulics analysis of fuel assembly with inner duct structure of a sodium-cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Tanaka, Masaaki; Ohshima, Hiroyuki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2017 Koen Rombunshu (CD-ROM), 4 Pages, 2017/08

A specific fuel assembly named FAIDUS (Fuel Assembly with Inner Duct Structure) has been developed as one of the measures to enhance safety of the reactor in the core disruptive accident (CDA) in JAEA. Thermal-hydraulics evaluations in FAIDUS under various operation conditions including the CDA are required to confirm its design feasibility. Therefore, numerical simulations by using thermal-hydraulics analysis program named SPIRAL developed in JAEA are conducted to analyze the thermal-hydraulics in the FAIDUS. Through the numerical simulation in the FAIDUS under tentative rated operation condition of an Advanced SFR, it was indicated that the flow and temperature distribution in the FAIDUS showed the same tendency as that in ordinary FA and specific characteristics was not observed.

Journal Articles

Thermal-hydraulic analysis of fuel assembly with inner duct structure of an advanced loop-type sodium-cooled fast reactor using ASFRE code

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 12 Pages, 2017/07

In the design study of an advanced loop-type SFR in JAEA, a specific fuel assembly (FA) named FAIDUS (Fuel Assembly with Inner DUct Structure) has been adopted as one of the measures to enhance safety of the reactor. Thermal-hydraulics evaluations of FAIDUS under various operation conditions are required to confirm its design feasibility. In this study, after the applicability of ASFRE to FAs was confirmed through the numerical analysis using simulated FA tests, thermal-hydraulic analyses of a FA without an inner duct and a FAIDUS were conducted. Through the numerical analyses, it was indicated that asymmetric temperature distribution in a FAIDUS would not be occurred and characteristics of the temperature distribution was almost the same as that in a FA without an inner duct. Under the low flow rate condition, it was expected that the local flow acceleration caused by the buoyancy force in a FAIDUS could bring the flow redistribution and make the temperature distribution flat.

Journal Articles

Metallurgical investigations on creep rupture mechanisms of dissimilar welded joints between Gr.91 and 304SS

Yamashita, Takuya; Nagae, Yuji; Kikuchi, Koichi*; Yamamoto, Kenji*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04

126 (Records 1-20 displayed on this page)