Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 99

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Hexaquark picture for $$d$$*(2380)

Kim, H.*; Kim, K. S.*; Oka, Makoto

Physical Review D, 102(7), p.074023_1 - 074023_10, 2020/10

 Times Cited Count:0

no abstracts in English

Journal Articles

The Joint evaluated fission and fusion nuclear data library, JEFF-3.3

Plompen, A. J. M.*; Cabellos, O.*; De Saint Jean, C.*; Fleming, M.*; Algora, A.*; Angelone, M.*; Archier, P.*; Bauge, E.*; Bersillon, O.*; Blokhin, A.*; et al.

European Physical Journal A, 56(7), p.181_1 - 181_108, 2020/07

 Times Cited Count:5 Percentile:8.7(Physics, Nuclear)

The Joint Evaluated Fission and Fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides $$^{235}$$U, $$^{238}$$U and $$^{239}$$Pu, on $$^{241}$$Am and $$^{23}$$Na, $$^{59}$$Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yileds, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 is excellent for a wide range of nuclear technology applications, in particular nuclear energy.

Journal Articles

How different is the core of $$^{25}$$F from $$^{24}$$O$$_{g.s.}$$ ?

Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri. A.*; Hwang, S. H.*; et al.

Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05

 Times Cited Count:1 Percentile:30.13(Physics, Multidisciplinary)

The structure of a neutron-rich $$^{25}$$F nucleus is investigated by a quasifree ($$p,2p$$) knockout reaction. The sum of spectroscopic factors of $$pi 0d_{5/2}$$ orbital is found to be 1.0 $$pm$$ 0.3. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus, and the core consists of $$sim$$35% $$^{24}$$O$$_{rm g.s.}$$, and $$sim$$65% excited $$^{24}$$O. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus. The result may infer that the addition of the $$0d_{5/2}$$ proton considerably changes the neutron structure in $$^{25}$$F from that in $$^{24}$$O, which could be a possible mechanism responsible for the oxygen dripline anomaly.

Journal Articles

Shell evolution of $$N$$ = 40 isotones towards $$^{60}$$Ca; First spectroscopy of $$^{62}$$Ti

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Lenzi, S. M.*; Men$'e$ndez, J.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; et al.

Physics Letters B, 800, p.135071_1 - 135071_7, 2020/01

 Times Cited Count:3 Percentile:13.44(Astronomy & Astrophysics)

Excited states in the $$N$$ = 40 isotone $$^{62}$$Ti were populated via the $$^{63}$$V($$p$$,$$2p$$)$$^{62}$$Ti reaction at $$sim$$200 MeV/nucleon at the Radioactive Isotope Beam Factory and studied using $$gamma$$-ray spectroscopy. The energies of the $$2_1^+ rightarrow 0_{rm gs}^+$$ and $$4_1^+ rightarrow 2_1^+$$ transitions, observed here for the first time, indicate a deformed Ti ground state. These energies are increased compared to the neighboring $$^{64}$$Cr and $$^{66}$$Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings.

Journal Articles

Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction

Woo, W.*; Jeong, J. S.*; Kim, D.-K.*; Lee, C. M.*; Choi, S.-H.*; Suh, J.-Y.*; Lee, S. Y.*; Harjo, S.; Kawasaki, Takuro

Scientific Reports (Internet), 10(1), p.1350_1 - 1350_15, 2020/01

 Times Cited Count:1 Percentile:100(Multidisciplinary Sciences)

Journal Articles

PARaDIM; A PHITS-based Monte Carlo tool for internal dosimetry with tetrahedral mesh computational phantoms

Carter, L. M.*; Crawford, T. M.*; Sato, Tatsuhiko; Furuta, Takuya; Choi, C.*; Kim, C. H.*; Brown, J. L.*; Bolch, W. E.*; Zanzonico, P. B.*; Lewis, J. S.*

Journal of Nuclear Medicine, 60(12), p.1802 - 1811, 2019/12

 Times Cited Count:3 Percentile:46.94(Radiology, Nuclear Medicine & Medical Imaging)

Voxel human phantoms have been used for internal dose assessment. More anatomically accurate representation become possible for skins or layer tissues owing to recent developments of advanced polygonal mesh-type phantoms and thus internal dose assessment using those advanced phantoms are desired. However, the Monte Carlo transport calculation by implementing those phantoms require an advanced knowledge for the Monte Carlo transport codes and it is only limited to experts. We therefore developed a tool, PARaDIM, which enables users to conduct internal dose calculation with PHITS easily by themselves. With this tool, a user can select tetrahedral-mesh phantoms, set radionuclides in organs, and execute radiation transport calculation with PHITS. Several test cases of internal dosimetry calculations were presented and usefulness of this tool was demonstrated.

Journal Articles

A Review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments

Baron, P.*; Cornet, S. M.*; Collins, E. D.*; DeAngelis, G.*; Del Cul, G.*; Fedorov, Y.*; Glatz, J. P.*; Ignatiev, V.*; Inoue, Tadashi*; Khaperskaya, A.*; et al.

Progress in Nuclear Energy, 117, p.103091_1 - 103091_24, 2019/11

 Times Cited Count:4 Percentile:28.97(Nuclear Science & Technology)

The results of an international review of separation processes for spent nuclear fuel (SNF) recycling in future closed fuel cycles with the evaluation of Technology Readiness Level are reported. This study was made by the Expert Group on Fuel Recycling Chemistry (EGFRC) organised by the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD). A unique feature of this study was that processes were classified according to a hierarchy of separations aimed at different elements within spent fuel (uranium; uranium-plutonium co-recovery; minor actinides; high heat generating radionuclides) and also the Head-end processes, used to prepare the SNF for chemical separation, were included. Separation processes covered both wet (hydrometallurgical) and dry (pyro-chemical) processes.

Journal Articles

High-rate performance of a time projection chamber for an H-dibaryon search experiment at J-PARC

Kim, S. H.*; Ichikawa, Yudai; Sako, Hiroyuki; Hasegawa, Shoichi; Hayakawa, Shuhei*; Nanamura, Takuya*; Sato, Susumu; Tanida, Kiyoshi; Yoshida, Junya; 11 of others*

Nuclear Instruments and Methods in Physics Research A, 940, p.359 - 370, 2019/10

 Times Cited Count:2 Percentile:34.3(Instruments & Instrumentation)

Journal Articles

Quasifree neutron knockout from $$^{54}$$Ca corroborates arising $$N=34$$ neutron magic number

Chen, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Chazono, Yoshiki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Raimondi, F.*; et al.

Physical Review Letters, 123(14), p.142501_1 - 142501_7, 2019/10

 Times Cited Count:8 Percentile:16.18(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Beam commissioning of muon beamline using negative hydrogen ions generated by ultraviolet light

Nakazawa, Yuga*; Bae, S.*; Choi, H.*; Choi, S.*; Iijima, Toru*; Iinuma, Hiromi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kim, B.*; Ko, H. S.*; et al.

Nuclear Instruments and Methods in Physics Research A, 937, p.164 - 167, 2019/09

 Times Cited Count:1 Percentile:58.8(Instruments & Instrumentation)

A muon linac is under development for the precise measurement of the muon anomalous magnetic moment ($$g$$-2) and electric dipole moment (EDM) with a reaccelerated thermal muon beam. An H$$^-$$ source driven by an ultraviolet light has been developed for the muon acceleration experiment. Prior to the acceleration experiment, a beamline commissioning was performed using this H$$^-$$ beam, since the accelerated muon intensity is very low. We successfully measured the magnetic rigidity, which is essential for identifying the accelerated muons. This H$$^-$$ source is capable of utilizing as a general-purpose beam source for other beamline.

Journal Articles

Vector and Axial-vector form factors in radiative kaon decay and flavor SU(3) symmetry breaking

Shim, S.-I.*; Hosaka, Atsushi; Kim, H.-C.*

Physics Letters B, 795, p.438 - 445, 2019/08

 Times Cited Count:1 Percentile:63.02(Astronomy & Astrophysics)

Journal Articles

Computation speeds and memory requirements of mesh-type ICRP reference computational phantoms in Geant4, MCNP6, and PHITS

Yeom, Y. S.*; Han, M. C.*; Choi, C.*; Han, H.*; Shin, B.*; Furuta, Takuya; Kim, C. H.*

Health Physics, 116(5), p.664 - 676, 2019/05

 Times Cited Count:3 Percentile:20.8(Environmental Sciences)

Recently, Task Group 103 of the ICRP developed the mesh-type reference computational phantoms (MCRPs), which are planned for use in future ICRP dose coefficient calculation. Performance of major Monte Carlo particle transport codes (Geant4, MCNP6, and PHITS) were tested with MCRP. External and internal exposure of various particles and energies were calculated and the computational times and required memories were compared. Additionally calculation for voxel-mesh phantom was also conducted so that the influence of different mesh-representation in each code was studied. Memory usage of MRCP was as large as 10 GB with Geant4 and MCNP6 while it is much less with PHITS (1.2 GB). In addition, the computational time required for MRCP tends to increase compared to voxel-mesh phantoms with Geant4 and MCNP6 while it is equal or tends to decrease with PHITS.

Journal Articles

Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system

Zhang, Y.*; Guo, H.*; Kim, S. B.*; Wu, Y.*; Ostojich, D.*; Park, S. H.*; Wang, X.*; Weng, Z.*; Li, R.*; Bandodkar, A. J.*; et al.

Lab on a Chip, 19(9), p.1545 - 1555, 2019/05

 Times Cited Count:20 Percentile:1.78(Biochemical Research Methods)

This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, across physiologically relevant ranges. The results allow for routine, non-pharmacological capture of sweat across patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.

Journal Articles

Further signatures to support the tetraquark mixing framework for the two light-meson nonets

Kim, H.*; Kim, K. S.*; Cheoun, M.-K.*; Jido, Daisuke*; Oka, Makoto

Physical Review D, 99(1), p.014005_1 - 014005_15, 2019/01

 Times Cited Count:4 Percentile:46.54(Astronomy & Astrophysics)

We investigate additional signatures to support the tetraquark mixing framework that has been recently proposed as a possible structure for the two nonets. We reexamine the mass ordering generated from the tetraquark nonets and show that this mass ordering is satisfied by the two nonets although the ordering in the heavy nonet is marginal. The marginal mass ordering can be regarded as another signature for tetraquarks because it can be explained partially by the hyperfine masses calculated from the tetraquark mixing framework. As a peculiar signature distinguished from the other approaches, we investigate the fall-apart coupling strengths into two vector mesons from our tetraquarks. Coupling strengths into the two-vector modes are found to enhance strongly in the heavy nonet while they are suppressed in the light nonet. The coupling ratios are found to be huge. This trend in the two-vector modes can provide another testing ground for the tetraquark mixing framework. Some experimental evidence related to the phenomena is discussed particularly from the resonances belonging to the heavy nonet.

Journal Articles

Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat

Bandodkar, A. J.*; Gutruf, P.*; Choi, J.*; Lee, K.-H.*; Sekine, Yurina; Reeder, J. T.*; Jeang, W. J.*; Aranyosi, A. J.*; Lee, S. P.*; Model, J. B.*; et al.

Science Advances (Internet), 5(1), p.eaav3294_1 - eaav3294_15, 2019/01

 Times Cited Count:86 Percentile:0.17(Multidisciplinary Sciences)

Interest in advanced wearable technologies increasingly extends beyond systems for biophysical measurements to those that enable continuous, non-invasive monitoring of biochemical markers in biofluids. Here, we introduce battery-free, wireless microelectronic platforms that perform sensing via schemes inspired by the operation of biofuel cells. Combining these systems in a magnetically releasable manner with chrono-sampling microfluidic networks that incorporate assays based on colorimetric sensing yields thin, flexible, lightweight, skin-interfaced technologies with broad functionality in sweat analysis. A demonstration device allows simultaneous monitoring of sweat rate/loss, along with quantitative measurements of pH and of lactate, glucose and chloride concentrations using biofuel cell and colorimetric approaches.

Journal Articles

Conceptual uncertainties in modelling the interaction between engineered and natural barriers of nuclear waste repositories in crystalline rocks

Finsterle, S.*; Lanyon, B.*; ${AA}$kesson, M.*; Baxter, S.*; Bergstr$"o$m, M.*; Bockg${aa}$rd, N.*; Dershowitz, W.*; Dessirier, B.*; Frampton, A.*; Fransson, ${AA}$.*; et al.

Geological Society, London, Special Publications, No.482, p.261 - 283, 2019/00

 Times Cited Count:2 Percentile:34.3

Nuclear waste disposal in geological formations relies on a multi-barrier concept that includes engineered components which in many cases includes a bentonite buffer surrounding waste packages and the host rock. An SKB's (Swedish Nuclear Fuel and Waste Management Co.) Modelling Task Force project facilitated to improve the overall understanding of rock - bentonite interactions, as 11 teams used different conceptualisations and modelling tools to analyse the in-situ experiment at the $"A$ps$"o$ Hard Rock Laboratory. The exercise helped identify conceptual uncertainties that led to different assessments of the relative importance of the engineered and natural barrier subsystems and of aspects that need to be better understood to arrive at reliable predictions of bentonite wetting.

Journal Articles

Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition

Kim, S. B.*; Lee, K.-H.*; Raj, M. S.*; Reeder, J. T.*; Koo, J.*; Hourlier-Fargette, A.*; Bandodkar, A. J.*; Won, S. M.*; Sekine, Yurina; Choi, J.*; et al.

Small, 14(45), p.1802876_1 - 1802876_9, 2018/11

 Times Cited Count:23 Percentile:8.99(Chemistry, Multidisciplinary)

Excretion of sweat from eccrine glands is a dynamic physiological process that varies with body position, activity level, and health status. Information content embodied in sweat rate and chemistry can be used to assess health status and athletic performance. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication with capabilities in near field communications (NFC). Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects establish the key operational features and their utility in sweat analytics.

Journal Articles

Stratification break-up by a diffuse buoyant jet; A CFD benchmark exercise

Studer, E.*; Abe, Satoshi; Andreani, M.*; Bharj, J. S.*; Gera, B.*; Ishay, L.*; Kelm, S.*; Kim, J.*; Lu, Y.*; Paliwal, P.*; et al.

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 16 Pages, 2018/10

Journal Articles

A Fluorometric skin-interfaced microfluidic device and smartphone imaging module for ${{it in situ}}$ quantitative analysis of sweat chemistry

Sekine, Yurina; Kim, S. B.*; Zhang, Y.*; Bandodkar, A. J.*; Xu, S.*; Choi, J.*; Irie, Masahiro*; Ray, T. R.*; Kohli, P.*; Kozai, Naofumi; et al.

Lab on a Chip, 18(15), p.2178 - 2186, 2018/08

The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in-situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques.

Journal Articles

Development of a microchannel plate based beam profile monitor for a re-accelerated muon beam

Kim, B.*; Bae, S.*; Choi, H.*; Choi, S.*; Kawamura, Naritoshi*; Kitamura, Ryo*; Ko, H. S.*; Kondo, Yasuhiro; Mibe, Tsutomu*; Otani, Masashi*; et al.

Nuclear Instruments and Methods in Physics Research A, 899, p.22 - 27, 2018/08

 Times Cited Count:4 Percentile:29.78(Instruments & Instrumentation)

A beam profile monitor (BPM) based on a microchannel plate has been developed for muon beams with low transverse momentum for the measurement of the muon anomalous magnetic moment and electric dipole moment at high precision, with capability of diagnosing muon beams of kinetic energy range from a few keV to 4 MeV. The performance of the BPM has been evaluated using a surface muon beam at J-PARC and additionally with an ultraviolet (UV) light source. It has been confirmed that the BPM has a dynamic range from a few to 10$$^4$$ muons per bunch without saturation. The spatial resolution of the BPM has been estimated to be less than 0.30 mm. The positron background from muon decays is an obstacle in muon beam profile monitoring and a partial discrimination of the positrons has been achieved under discrete particle conditions.

99 (Records 1-20 displayed on this page)