Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Gu, G. H.*; Jeong, S. G.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Cho, J.*; Kim, H. S.*; 4 of others*
Journal of Materials Science & Technology, 223, p.308 - 324, 2025/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Sugita, Yutaka; Ono, Hirokazu; Beese, S.*; Pan, P.*; Kim, M.*; Lee, C.*; Jove-Colon, C.*; Lopez, C. M.*; Liang, S.-Y.*
Geomechanics for Energy and the Environment, 42, p.100668_1 - 100668_21, 2025/06
Times Cited Count:1 Percentile:0.00(Energy & Fuels)The international cooperative project DECOVALEX 2023 focused on the Horonobe EBS experiment in the Task D, which was undertaken to study, using numerical analyses, the thermo-hydro-mechanical (or thermo-hydro) interactions in bentonite based engineered barriers. One full-scale in-situ experiment and four laboratory experiments, largely complementary, were selected for modelling. The Horonobe EBS experiment is a temperature-controlled non-isothermal experiment combined with artificial groundwater injection. The Horonobe EBS experiment consists of the heating and cooling phases. Six research teams performed the THM or TH (depended on research team approach) numerical analyses using a variety of computer codes, formulations and constitutive laws.
Kawasaki, Takuro; Fukuda, Tatsuo; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Baba, Masaaki*; Hashimoto, Hideki*; Harjo, S.; Aizawa, Kazuya; Tanaka, Hirohisa*; et al.
Journal of Applied Physics, 137(9), p.094101_1 - 094101_7, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Suzuki, Seiya; Katsube, Daiki*; Yano, Masahiro; Tsuda, Yasutaka; Terasawa, Tomoo; Ozawa, Takahiro*; Fukutani, Katsuyuki; Kim, Y.*; Asaoka, Hidehito; Yuhara, Junji*; et al.
Small Methods, 9(3), p.2400863_1 - 2400863_9, 2025/03
Times Cited Count:1 Percentile:30.18(Chemistry, Physical)Cho, S. H.*; Cho, S. W.*; Lv, Z.*; Sekine, Yurina; Liu, S.*; Zhou, M.*; Nuxoll, R. F.*; Kanatzidis, E. E.*; Ghaffari, R.*; Kim, D.*; et al.
Lab on a Chip, 9 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Biochemical Research Methods)Amino acids are essential for protein synthesis and metabolic processes in support of homeostatic balance and healthy body functions. This study quantitatively investigates eccrine sweat as a significant channel for loss of amino acids during exercise, to improve an understanding of amino acid turnover and to provide feedback to users on the need for supplement intake. The measurement platform consists of a soft, skin-interfaced microfluidic system for real-time analysis of amino acid content in eccrine sweat. This system relies on integrated fluorometric assays and smartphone-based imaging techniques for quantitative analysis.
Sarenac, D.*; Gorbet, G.*; Clark, C. W.*; Cory, D. G.*; Ekinci, H.*; Henderson, M. E.*; Huber, M. G.*; Hussey, D. S.*; Kapahi, C.*; Kienzle, P. A.*; et al.
Physical Review Research (Internet), 6(3), p.L032054_1 - L032054_8, 2024/09
Osawa, Naoki*; Kim, S.-Y.*; Kubota, Masahiko*; Wu, H.*; Watanabe, So; Ito, Tatsuya; Nagaishi, Ryuji
Nuclear Engineering and Technology, 56(3), p.812 - 818, 2024/03
Times Cited Count:2 Percentile:75.80(Nuclear Science & Technology)Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Avdeev, M.*; Iida, Kazuki*; Kajimoto, Ryoichi; Park, J.-G.*
Physical Review B, 109(6), p.L060403_1 - L060403_7, 2024/02
Times Cited Count:6 Percentile:84.81(Materials Science, Multidisciplinary)Liao, L.*; Puebla, J.*; Yamamoto, Kei; Kim, J.*; Maekawa, Sadamichi*; Hwang, Y.*; Ba, Y.*; Otani, Yoshichika*
Physical Review Letters, 131(17), p.176701_1 - 176701_6, 2023/10
Times Cited Count:8 Percentile:79.13(Physics, Multidisciplinary)Yang, D. S.*; Wu, Y.*; Kanatzidis, E. E.*; Avila, R.*; Zhou, M.*; Bai, Y.*; Chen, S.*; Sekine, Yurina; Kim, J.*; Deng, Y.*; et al.
Materials Horizons, 10(11), p.4992 - 5003, 2023/09
Times Cited Count:12 Percentile:78.05(Chemistry, Multidisciplinary)This paper presents a set of findings that enhances the performance of these systems through the use of microfluidic networks, integrated valves and microscale optical cuvettes formed by three-dimensional printing in hard/soft hybrid materials systems, for accurate spectroscopic and fluorometric assays. Field studies demonstrate the capability of these microcuvette systems to evaluate the concentrations of copper, chloride, and glucose in sweat, along with the sweat pH, with laboratory grade accuracy and sensitivity.
Mun, M.-H.*; Shin, I. J.*; Paeng, W.-G.*; Harada, Masayasu*; Kim, Y.*
European Physical Journal A, 59(7), p.149_1 - 149_6, 2023/07
Times Cited Count:4 Percentile:67.28(Physics, Nuclear)Kim, Y.*; Oka, Makoto; Suenaga, Daiki*; Suzuki, Kei
Physical Review D, 107(7), p.074015_1 - 074015_15, 2023/04
Times Cited Count:8 Percentile:68.74(Astronomy & Astrophysics)A chiral effective theory of scalar and vector diquarks is formulated, which is based on chiral symmetry and includes interactions between scalar and vector diquarks with one or two mesons. We find that the diquark interaction term with two mesons breaks the
and flavor
symmetries. To determine the coupling constants of the interaction Lagrangians, we investigate one-pion emission decays of singly heavy baryons
(
,
and
,
,
), where baryons are regarded as diquark-heavy-quark two-body systems. Using this model, we present predictions of the unobserved decay widths of singly heavy baryons. We also study the change of masses and strong decay widths of singly heavy baryons under partial restoration of chiral symmetry.
Shibata, Goro; Won, C.*; Kim, J.*; Nonaka, Yosuke*; Ikeda, Keisuke*; Wan, Y.*; Suzuki, Masahiro*; Koide, Tsuneharu*; Tanaka, Arata*; Cheong, S.-W.*; et al.
Photon Factory Activity Report 2022 (Internet), 2 Pages, 2023/00
no abstracts in English
Akuzawa, Tadashi*; Kim, S.-Y.*; Kubota, Masahiko*; Wu, H.*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5851 - 5858, 2022/12
Times Cited Count:5 Percentile:60.29(Chemistry, Analytical)Walter, H.*; Colonna, M.*; Cozma, D.*; Danielewicz, P.*; Ko, C. M.*; Kumar, R.*; Ono, Akira*; Tsang, M. Y. B*; Xu, J.*; Zhang, Y.-X.*; et al.
Progress in Particle and Nuclear Physics, 125, p.103962_1 - 103962_90, 2022/07
Times Cited Count:90 Percentile:95.20(Physics, Nuclear)Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions to reach consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed by the various participating codes. These included both calculations of nuclear matter in a periodic box, which test individual ingredients of a transport code, and calculations of complete collisions of heavy ions. Over the years, five studies were performed within this project. They show, on one hand, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann-Uehling-Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. On the other hand, there still exist substantial differences when these codes are applied to real heavy-ion collisions. The results of transport simulations of heavy-ion collisions will have more significance if codes demonstrate that they can verify benchmark calculations such as the ones studied in these evaluations.
Kawasaki, Takuro; Fukuda, Tatsuo; Yamanaka, Satoru*; Sakamoto, Tomokazu*; Murayama, Ichiro*; Kato, Takanori*; Baba, Masaaki*; Hashimoto, Hideki*; Harjo, S.; Aizawa, Kazuya; et al.
Journal of Applied Physics, 131(13), p.134103_1 - 134103_7, 2022/04
Times Cited Count:2 Percentile:15.59(Physics, Applied)Kim, Y.*; Oka, Makoto; Suzuki, Kei
Physical Review D, 105(7), p.074021_1 - 074021_17, 2022/04
Times Cited Count:36 Percentile:94.71(Astronomy & Astrophysics)Energy spectrum of doubly heavy tetraquarks, (
with
and
), is studied in the potential chiral-diquark model. Using the chiral effective theory of diquarks and the quark-diquark-based potential model, the
,
, and
tetraquarks are described as a three-body system composed of two heavy quarks and an antidiquark. We find several
bound states, while no
and
(deep) bound state is seen. We also study the change of the
tetraquark masses under restoration of chiral symmetry.
Wei, D.*; Wang, L.*; Zhang, Y.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Jiang, J.*; Harjo, S.; Kawasaki, Takuro; Bae, J. W.*; et al.
Acta Materialia, 225, p.117571_1 - 117571_16, 2022/02
Times Cited Count:97 Percentile:99.64(Materials Science, Multidisciplinary)Kumagai, Tomohisa*; Miura, Yasufumi*; Miura, Naoki*; Marie, S.*; Almahdi, R.*; Mano, Akihiro; Li, Y.; Katsuyama, Jinya; Wada, Yoshitaka*; Hwang, J.-H.*; et al.
Journal of Pressure Vessel Technology, 144(1), p.011509_1 - 011509_18, 2022/02
Times Cited Count:1 Percentile:8.34(Engineering, Mechanical)To predict fracture behavior for ductile materials, some ductile fracture simulation methods different from classical approaches have been investigated based on appropriate models of ductile fracture. For the future use of the methods to overcome restrictions of classical approaches, the applicability to the actual components is of concern. In this study, two benchmark problems on the fracture tests supposing actual components were provided to investigate prediction ability of simulation methods containing parameter decisions. One was the circumferentially through-wall and surface cracked pipes subjected to monotonic bending, and the other was the circumferentially through-wall cracked pipes subjected to cyclic bending. Participants predicted the ductile crack propagation behavior by their own approaches, including FEM employed GTN yielding function with void ratio criterion, are FEM employed GTN yielding function, FEM with fracture strain or energy criterion modified by stress triaxiality, XFEM with J or delta J criterion, FEM with stress triaxiality and plastic strain based ductile crack propagation using FEM, and elastic-plastic peridynamics. Both the deformation and the crack propagation behaviors for monotonic bending were well reproduced, while few participants reproduced those for cyclic bending. To reproduce pipe deformation and fracture behaviors, most of groups needed parameters which were determined toreproduce pipe deformation and fracture behaviors in benchmark problems themselves and it is still difficult to reproduce them by using parameters only from basic materials tests.
Kim, Y. S.*; Chae, H.*; Huang, E.-W.*; Jain, J.*; Harjo, S.; Kawasaki, Takuro; Hong, S. I.*; Lee, S. Y.*
Materials, 15(4), p.1312_1 - 1312_11, 2022/02
Times Cited Count:1 Percentile:7.22(Chemistry, Physical)