Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsubara, Akihiro*; Kokubu, Yoko; Nishio, Kazuhisa*; Kimura, Kenji*; Kashimura, Keiichiro*; Shimada, Koji; Fujita, Natsuko
Nuclear Instruments and Methods in Physics Research B, 568, p.165863_1 - 165863_5, 2025/11
We propose a concept for a cesium-free negative ion source based on microwave heating of granular low work function materials, which allows for both safety and high efficiency. This negative ion source features a structure where the plasma region and the negative ion generation region are adjacent within a microwave cavity. In the negative ion generation region, granular low work function materials heated by microwaves are placed. The sample gas entering the plasma region is excited, then it enters the negative ion generation region. Subsequently, it comes into contact with the surface of the low work function material, changes into negative ions, and finally, is extracted by an electric field. One advantage of this negative ion source is that, by using low work function materials in granular form, the reactive area is more than ten times larger compared to conventional negative ion sources using low work function materials.
Jinno, Satoshi; Matsubara, Akihiro*; Fujita, Natsuko; Kimura, Kenji
Isotope News, (801), p.2 - 5, 2025/10
Accelerator Mass Spectrometry (AMS) is widely used in archaeology and geosciences, and since the 2000s, downsized AMS with an acceleration voltage of 200
500 kV has been put to practical use mainly for
C dating. However, the beam divergence due to collisions with gases increases at accelerating energies below 100 keV, resulting in a decrease in transmittance. Therefore, we are investigating charge conversion and dissociation of interfering molecules on KCl, SnTe, and Au crystal surfaces using the crystal surface stripper method we have developed. In this article, we report on the position of our research and the current progress.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Jinno, Satoshi; Watanabe, Takahiro; Nishio, Tomohiro*; Ogawa, Yumi; Omae, Akiomi*; Kimura, Kenji; et al.
Dai-36-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.90 - 92, 2025/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
rays in the
La(
)
La reactionOkuizumi, Mao*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 111(3), p.034611_1 - 034611_6, 2025/03
Times Cited Count:0 Percentile:75.94(Physics, Nuclear)Maeda, Mizuho*; Matsuda, Tatsuma*; Haga, Yoshinori; Shirasaki, Kenji*; Kimura, Noriaki*
Journal of the Physical Society of Japan, 94(2), p.024707_1 - 024707_6, 2025/01
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Jinno, Satoshi; Matsubara, Akihiro*; Fujita, Natsuko; Kimura, Kenji
Nuclear Instruments and Methods in Physics Research B, 557, p.165545_1 - 165545_4, 2024/12
Times Cited Count:1 Percentile:36.86(Instruments & Instrumentation)This study introduces the development of a downsized Accelerator Mass Spectrometry (AMS) system aiming to enhance accessibility and cost-effectiveness in radiocarbon analysis. The "crystal surface stripper method" is introduced as a solution to challenges in AMS downsizing, demonstrating effective ion detection with a smaller angular spread compared to conventional gas stripper methods. The experimental results provide insights into charge conversion capabilities, scattering angle broadening, and energy loss associated with surface scattering.
by multiple-wavelength neutron holographyYamakawa, Kota*; Nakada, Hajime*; Kimura, Koji*; Oikawa, Kenichi; Harada, Masahide; Inamura, Yasuhiro; Oyama, Kenji*; Hayashi, Koichi*
Journal of the Physical Society of Japan, 93(10), p.104601_1 - 104601_5, 2024/10
Times Cited Count:1 Percentile:30.02(Physics, Multidisciplinary)
Yamamoto, Hajime*; Ikeda, Osamu*; Honda, Takashi*; Kimura, Kenta*; Aoyama, Takuya*; Ogushi, Kenya*; Suzuki, Akio*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; et al.
Physical Review Materials (Internet), 8(9), p.094402_1 - 094402_6, 2024/09
Times Cited Count:3 Percentile:43.86(Materials Science, Multidisciplinary)
-odd/
-odd interactions on the 0.75 eV
-wave resonance in
+
forward transmission determined using a pulsed neutron beamNakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Hirota, Katsuya*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.L041602_1 - L041602_4, 2024/04
Times Cited Count:1 Percentile:10.37(Physics, Nuclear)Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Takahashi, Yuto*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; et al.
Dai-25-Kai AMS Shimpojiumu Hokokushu (Internet), 3 Pages, 2024/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.
Dai-35-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.17 - 19, 2024/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Fujita, Natsuko; Matsubara, Akihiro*; Jinno, Satoshi; Kimura, Kenji
Hoshasen (Internet), 48(4), p.137 - 138, 2024/02
We have been developing a downsized AMS with a size of about 2 m
2 m. This AMS is developed to demonstrate a new method of separating same-mass molecules, which are interfering nuclides during AMS measurement of carbon-14, using ion channeling.
CoSiYamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Tada, Kenichi; Yokoyama, Kenji
Kaku Deta Nyusu (Internet), (136), 6 Pages, 2023/10
no abstracts in English
Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.
Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06
Times Cited Count:2 Percentile:51.01(Instruments & Instrumentation)The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 (
C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for
C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Nagaya, Yasunobu; Tada, Kenichi; et al.
EPJ Web of Conferences, 284, p.14001_1 - 14001_7, 2023/05
Times Cited Count:2 Percentile:83.48(Nuclear Science & Technology)
rays from a neutron-induced
-wave resonance of
XeOkudaira, Takuya*; Tani, Yuika*; Endo, Shunsuke; Doskow, J.*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kameda, Kento*; Kimura, Atsushi; Kitaguchi, Masaaki*; Luxnat, M.*; et al.
Physical Review C, 107(5), p.054602_1 - 054602_7, 2023/05
Times Cited Count:6 Percentile:73.42(Physics, Nuclear)no abstracts in English
Matsubara, Akihiro*; Fujita, Natsuko; Miyake, Masayasu; Ishii, Masahiro*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi; Jinno, Satoshi; Kimura, Kenji; et al.
JAEA-Conf 2022-002, p.55 - 62, 2023/03
We report the present status of the JAEA-AMS-TONO. Particularly, the destructions of varistors used in the beamline equipment will be presented. The cause of the destruction as well as implementation of the safety measures are mentioned.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Yamamoto, Yusuke; Kimura, Kenji; et al.
Dai-23-Kai AMS Shimpojiumu Hokokushu, p.1 - 4, 2022/12
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Fujita, Natsuko; Matsubara, Akihiro; Kimura, Kenji; Jinno, Satoshi; Kokubu, Yoko
Nuclear Instruments and Methods in Physics Research B, 532, p.13 - 18, 2022/12
Times Cited Count:2 Percentile:28.44(Instruments & Instrumentation)Over the last decade, significant technological advances were made to downsize the AMS systems. Japan Atomic Energy Agency has started a project for developing a prototype downsized AMS system (with the footprint of the system is 1.9 m
1.9 m) based on the surface stripper technique. Although the system configuration using an ion source, magnets, and detectors is similar to that in conventional systems, there is no tandem accelerator as well as a gas stripper. The ion acceleration is provided in the ion source (maximum ion energy 40 keV). For proof-of-principle experiments, we have planned two steps: (1) Observation of the specular reflection and the dissociation by using a compact electrostatic analyzer located just behind the stripper, and (2) Demonstration of
C measurement, along with the experimental confirmation of the isobar suppression capability of the surface stripper.