Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 567

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of displacement cross-sections of copper and iron for proton with kinetic energies in the range 0.4 - 3 GeV

Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

Journal of Nuclear Science and Technology, 57(10), p.1141 - 1151, 2020/10

 Times Cited Count:2 Percentile:8.37(Nuclear Science & Technology)

To estimate the structural damages of materials in accelerator facilities, displacement per atom (dpa) is widely employed as a damage index, calculated based on the displacement cross-section obtained using a calculation model. Although dpa is applied as standard, the experimental data of the displacement cross-section for a proton in the energy region above 20 MeV are scarce. Among the calculation models, difference of about factor 8 exist, so that the experimental data of the cross-section are crucial to validate the model. To obtain the displacement cross-section, we conducted experiments at J-PARC. The displacement cross-section of copper and iron was successfully obtained for a proton projectile with the kinetic energies, 0.4 - 3 GeV. The results were compared with those obtained using the widely utilized Norgertt-Robinson-Torrens (NRT) model and the athermal-recombination-corrected (arc) model based on molecular dynamics. It was found that the NRT model overestimates the present displacement cross-section by 3.5 times. The calculation results obtained using with the arc model based on the Nordlund parameter show remarkable agreement with the experimental data. It can be concluded that the arc model must be employed for the dpa calculation for the damage estimation of copper and iron.

Journal Articles

Evaluation of gamma-ray strength function based on measured gamma-ray pulse-height spectra in time-of-flight neutron capture experiments

Iwamoto, Nobuyuki; Nakamura, Shoji; Kimura, Atsushi; Katabuchi, Tatsuya*; Rovira, G.*; Hara, Kaoru*; Iwamoto, Osamu

EPJ Web of Conferences, 239, p.17016_1 - 17016_4, 2020/09

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

EPJ Web of Conferences, 239, p.06006_1 - 06006_4, 2020/09

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Measurement for thermal neutron capture cross sections and resonance integrals of the $$^{243}$$Am(n,$$gamma$$)$$^{rm 244g}$$Am, $$^{rm 244m+g}$$Am reactions

Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*

KURNS Progress Report 2019, P. 132, 2020/08

Research and development were made for accuracy improvement of neutron capture cross section data on $$^{243}$$Am among minor actinides. First, the emission probabilities of decay $$gamma$$ rays were obtained with high accuracy, and the amount of the ground state of $$^{244}$$Am produced by reactor neutron irradiation of $$^{243}$$Am was examinded by $$gamma$$-ray measurement. Next, the total amount of isomer and ground states was examoned by $$alpha$$-ray measurement.

Journal Articles

Measurement of cesium isotopic ratio by thermal ionization mass spectrometry for neutron capture reaction studies on $$^{135}$$Cs

Shibahara, Yuji*; Nakamura, Shoji; Uehara, Akihiro*; Fujii, Toshiyuki*; Fukutani, Satoshi*; Kimura, Atsushi; Iwamoto, Osamu

Journal of Radioanalytical and Nuclear Chemistry, 325(1), p.155 - 165, 2020/07

 Times Cited Count:0 Percentile:100(Chemistry, Analytical)

The measurements of isotopic ratios of Cs samples by thermal ionization mass spectrometry were performed for the analysis of their samples used to evaluate nuclear data obtained for $$^{135}$$Cs. To obtain a high intensity and stable ion beam, the effects of additive agents on the ionization of Cs were examined. The effect of silicotungstic acid on the ionization of Cs was the largest among the additive agents studied in the present study, while the silicotungstic acid also showed the largest isobaric interference of polyatomic ions. It was demonstrated that as small as 2$$times$$10$$^{-13}$$ g of a Cs sample was sufficient to achieve the analytical precision required to measure the $$^{135}$$Cs/$$^{137}$$Cs ratio in the case where an additive agent of TaO/glucose was employed. After examining of the analytical conditions, such as the interference effect due to Ba, the measurements of the isotopic ratios of two Cs samples used in our study using TIMS were conducted, and it was discussed how much the ratios contributed to evaluation of the neutron capture cross-section of $$^{135}$$Cs.

Journal Articles

Measurements of thermal-neutron capture cross-section of cesium-135 by applying mass spectrometry

Nakamura, Shoji; Shibahara, Yuji*; Kimura, Atsushi; Iwamoto, Osamu; Uehara, Akihiro*; Fujii, Toshiyuki*

Journal of Nuclear Science and Technology, 57(4), p.388 - 400, 2020/04

 Times Cited Count:1 Percentile:58.8(Nuclear Science & Technology)

The thermal-neutron capture cross-section ($$sigma_{0}$$) and resonance integral(I$$_{0}$$) were measured for the $$^{135}$$Cs(n,$$gamma$$)$$^{136}$$Cs reaction by an activation method and mass spectrometry. We used $$^{135}$$Cs contained as an impurity in a normally available $$^{137}$$Cs standard solution. An isotope ratio of $$^{135}$$Cs and $$^{137}$$Cs in a standard $$^{137}$$Cs solution was measured by mass spectrometry to quantify $$^{135}$$Cs. The analyzed $$^{137}$$Cs samples were irradiated at the hydraulic conveyer of the research reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Wires of Co/Al and Au/Al alloys were used as neutron monitors to measure thermal-neutron fluxes and epi-thermal Westcott's indices at an irradiation position. A gadolinium filter was used to measure the $$sigma_{0}$$, and a value of 0.133 eV was taken as the cut-off energy. Gamma-ray spectroscopy was used to measure induced activities of $$^{137}$$Cs, $$^{136}$$Cs and monitor wires. On the basis of Westcott's convention, the $$sigma_{0}$$ and I$$_{0}$$ values were derived as 8.57$$pm$$0.25 barn, and 45.3$$pm$$3.2 barn, respectively. The $$sigma_{0}$$ obtained in the present study agreed within the limits of uncertainties with the past reported value of 8.3$$pm$$0.3 barn.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 28, p.061004_1 - 061004_6, 2020/02

no abstracts in English

Journal Articles

Neutron capture cross-section measurement and resolved resonance analysis of $$^{237}$$Np

Rovira, G.*; Katabuchi, Tatsuya*; Tosaka, Kenichi*; Matsuura, Shota*; Terada, Kazushi*; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki; Segawa, Mariko; et al.

Journal of Nuclear Science and Technology, 57(1), p.24 - 39, 2020/01

Journal Articles

Measurement of the angular distribution of $$gamma$$-rays after neutron capture by $$^{139}$$La for a T-violation search

Okudaira, Takuya; Shimizu, Hirohiko*; Kitaguchi, Masaaki*; Hirota, Katsuya*; Haddock, C. C.*; Ito, Ikuya*; Yamamoto, Tomoki*; Endo, Shunsuke*; Ishizaki, Kohei*; Sato, Takumi*; et al.

EPJ Web of Conferences, 219, p.09001_1 - 09001_6, 2019/12

Parity violating effects enhanced by up to 10$$^6$$ times have been observed in several neutron induced compound nuclei. There is a theoretical prediction that time reversal (T) violating effects can also be enhanced in these nuclei implying that T-violation can be searched for by making very sensitive measurements. However, the enhancement factor has not yet been measured in all nuclei. The angular distribution of the (n,$$gamma$$) reaction was measured with $$^{139}$$La by using a germanium detector assembly at J-PARC, and the enhancement factor was obtained. From the result, the measurement time to achieve the most sensitive T-violation search was estimated as 1.4 days, and a 40% polarized $$^{139}$$La target and a 70% polarized $$^3$$He spin filter whose thickness is 70 atm$$cdot$$cm are needed. Therefore high quality $$^3$$He spin filter is developed in JAEA. The measurement result of the (n,$$gamma$$) reaction at J-PARC and the development status of the $$^3$$He spin filter will be presented.

Journal Articles

Report of 31st Meeting of the Working Party on International Nuclear Data Evaluation Co-operation (WPEC)

Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Yokoyama, Kenji; Tada, Kenichi

Kaku Deta Nyusu (Internet), (124), p.23 - 34, 2019/10

The 31st annual meeting and the subgroup meeting of the Working Party on International Nuclear Data Evaluation Co-operation (WPEC) under the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) was held at the head quarter of OECD/NEA located at Boulogne-Billancourt near Paris from 24 to 28 in June in 2019. The activities about nuclear data measurement and evaluation of each region or country were reported at the annual meeting, and the SG activities were discussed at the subgroup meetings. The summary of these meetings are reported.

Journal Articles

Activation measurement for thermal-neutron capture cross-section of Cesium-135

Nakamura, Shoji; Kimura, Atsushi; Iwamoto, Osamu; Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*

KURNS Progress Report 2018, P. 106, 2019/08

Under the ImPACT project, the neutron capture cross-section measurements of Cesium-135 ($$^{135}$$Cs) among the long-lived fission products have been performed at Kyoto University. This paper reports measurements of the thermal-neutron capture cross-section of $$^{135}$$Cs at the Kyoto University Research Reactor (KUR).

Journal Articles

Measurements of the $$^{243}$$Am neutron capture and total cross sections with ANNRI at J-PARC

Kimura, Atsushi; Nakamura, Shoji; Terada, Kazushi*; Nakao, Taro*; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.

Journal of Nuclear Science and Technology, 56(6), p.479 - 492, 2019/06

 Times Cited Count:1 Percentile:58.8(Nuclear Science & Technology)

Journal Articles

Measurements of thermal-neutron capture cross-section and resonance integral of neptunium-237

Nakamura, Shoji; Kitatani, Fumito; Kimura, Atsushi; Uehara, Akihiro*; Fujii, Toshiyuki*

Journal of Nuclear Science and Technology, 56(6), p.493 - 502, 2019/06

 Times Cited Count:2 Percentile:34.3(Nuclear Science & Technology)

The thermal-neutron capture cross-section($$sigma_{0}$$)and resonance integral(I$$_{0}$$) were measured for the $$^{237}$$Np(n,$$gamma$$)$$^{238}$$Np reaction by an activation method. A method with a Gadolinium filter, which is similar to the Cadmium difference method, was used to measure the $$sigma_{0}$$ with paying attention to the first resonance at 0.489 eV of $$^{237}$$Np, and a value of 0.133 eV was taken as a cut-off energy. Neptunium-237 samples were irradiated at the pneumatic tube of the Kyoto University Research Reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Wires of Co/Al and Au/Al alloys were used as monitors to determine thermal-neutron fluxes and epi-thermal Westcott's indices at an irradiation position. A $$gamma$$-ray spectroscopy was used to measure activities of $$^{237}$$Np, $$^{238}$$Np and neutron monitors. On the basis of Westcott's convention, the $$sigma_{0}$$ and I$$_{0}$$ values were derived as 186.9$$pm$$6.2 barn, and 1009$$pm$$90 barn, respectively.

Journal Articles

Measurement of $$^{73}$$Ge(n,$$gamma$$) cross sections and implications for stellar nucleosynthesis

Lederer-Woods, C.*; Battino, U.*; Ferreira, P.*; Gawlik, A.*; Kimura, Atsushi; n_TOF Collaboration*; 128 of others*

Physics Letters B, 790, p.458 - 465, 2019/03

 Times Cited Count:1 Percentile:63.02(Astronomy & Astrophysics)

Journal Articles

Gamma-ray spectrum from thermal neutron capture on gadolinium-157

Hagiwara, Kaito*; Yano, Takatomi*; Das, P. K.*; Lorenz, S.*; Ou, Iwa*; Sakuda, Makoto*; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki; Harada, Hideo; et al.

Progress of Theoretical and Experimental Physics (Internet), 2019(2), p.023D01_1 - 023D01_26, 2019/02

 Times Cited Count:5 Percentile:20.02(Physics, Multidisciplinary)

Journal Articles

Cross section measurements of $$^{155,157}$$Gd(n,$$gamma$$) induced by thermal and epithermal neutrons

Mastromarco, M.*; Manna, A.*; Aberle, O.*; Andrzejewski, J.*; Harada, Hideo; Kimura, Atsushi; n_TOF Collaboration*; 116 of others*

European Physical Journal A, 55(1), p.9_1 - 9_20, 2019/01

 Times Cited Count:9 Percentile:6.44(Physics, Nuclear)

Journal Articles

Measurements of gamma-ray emission probabilities in the decay of americium-244g

Nakamura, Shoji; Terada, Kazushi*; Kimura, Atsushi; Nakao, Taro*; Iwamoto, Osamu; Harada, Hideo; Uehara, Akihiro*; Takamiya, Koichi*; Fujii, Toshiyuki*

Journal of Nuclear Science and Technology, 56(1), p.123 - 129, 2019/01

 Times Cited Count:1 Percentile:58.8(Nuclear Science & Technology)

Accurate data of $$gamma$$-ray emission probabilities are frequently needed when one quantitatively determines the amount of isotope by $$gamma$$-ray measurements or obtains neutron capture cross-sections using them. Americium-243, one of the most important minor actinides, produces $$^{244}$$Am after neutron capture. The 744-keV $$gamma$$-ray decaying from the ground state of $$^{244}$$Am has a relatively large $$gamma$$-ray emission probability c.a. 66%, however, its uncertainty is as large as 29%. The uncertainty of the $$gamma$$-ray emission probability leads to a major factor of the systematic uncertainty on determining an amount of isotope, and therefore the $$gamma$$-ray emission probability was measured by using an activation method and an examined level structure of $$^{244}$$Cm. In this study, the emission probability of 744-keV $$gamma$$ ray was derived as 66.5$$pm$$1.1%, and its uncertainty was improved from 29% to 2%.

Journal Articles

Progress of neutron-capture cross-section measurements promoted by ImPACT project at ANNRI in MLF of J-PARC

Nakamura, Shoji; Kimura, Atsushi; Hales, B. P.; Iwamoto, Osamu; Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*

JAEA-Conf 2018-001, p.199 - 203, 2018/12

Study on cross-section measurements has been promoted for $$^{135}$$Cs among long-lived fission products in ImPACT Project. The feasibility study on $$^{79}$$Se sample preparation also has been conducted to measure its cross sections in future. During the feasibility study, we started the neutron-capture cross-section measurements of stable Se isotopes. This paper reports research progresses on preparation of a radioactive $$^{135}$$Cs sample, neutron irradiation experiments with the Cs sample, and cross-section measurements of stable Se isotopes.

Journal Articles

Analysis of $$^{135}$$Cs/$$^{137}$$Cs isotopic ratio for samples used for neutron capture cross section measurement project by thermal ionization mass spectrometry

Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*; Nakamura, Shoji; Kimura, Atsushi; Hales, B. P.; Iwamoto, Osamu

JAEA-Conf 2018-001, p.205 - 210, 2018/12

In the ImPACT project, high-precision mass analysis was performed on a $$^{137}$$Cs standard solution for using $$^{135}$$Cs included in the standard solution as an impurity to measure the $$^{135}$$Cs cross-sections. A $$^{137}$$Cs standard solution of only 10Bq (pg order) was analyzed, and the isotope ratio of $$^{135}$$Cs and $$^{137}$$Cs was obtained with an accuracy of 0.5%.

567 (Records 1-20 displayed on this page)