Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 62(3), p.300 - 307, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Okuizumi, Mao*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 111(3), p.034611_1 - 034611_6, 2025/03
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 14 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 61(11), p.1415 - 1430, 2024/11
Times Cited Count:1 Percentile:68.64(Nuclear Science & Technology)Neutron capture cross-sections of nuclides targeted for decommissioning are necessary to contribute to the evaluation of radioactivity produced. The present study, Sc,
Cu,
Zn,
Ag and
In nuclides were selected as target ones, and their thermal-neutron capture cross-sections were measured by an activation method at Kyoto University Research Reactor. The thermal-neutron capture cross-sections were obtained as follows: 27.18
0.28 barn for
Sc(n,
)
Sc, 4.34
0.06 barn for
Cu(n,
)
Cu, 0.719
0.011 barn for
Zn(n,
)
Zn, 4.05
0.05 barn for
Ag(n,
)
Ag and 8.53
0.27 barn for
In(n,
)
In
. The results for
Sc and
Zn nuclides supported evaluated values within the limits of uncertainties, while those for the other nuclides were slightly different from evaluated ones. The obtained results are useful not only for the evaluation of production amount, but also for the monitor selection other than Au and Co by considering those nuclides as flux monitors.
Endo, Shunsuke; Abe, Ryota*; Fujioka, Hiroyuki*; Ino, Takashi*; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kawamura, Shiori*; Kimura, Atsushi; Kitaguchi, Masaaki*; Kobayashi, Ryuju*; et al.
European Physical Journal A, 60(8), p.166_1 - 166_10, 2024/08
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Nakamura, Shoji; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi; Shibahara, Yuji*
KURNS Progress Report 2023, P. 46, 2024/07
The present work is an attempt to measure the thermal-neutron capture cross-sections for some nuclides which are of importance in decommissioning to evaluate produced radioactivity. This work selected some of objective nuclides for decommissioning, such as Fe,
Er and
Hf, and measured thermal-neutron capture cross-sections for these nuclides by a neutron activation method at Kyoto University Research Reactor. The present results were obtained as follows:1.23
0.03 barn for
Fe(n,
)
Fe reaction, 8.19
0.35 barn for
Er(n,
)
Er reaction and 13.57
0.14 barn for
Hf(n,
)
Hf reaction. As a by-product, the measurement of Hf sample also presented 0.427
0.006 barn for
Hf(n,
)
mHf reaction. It has been revealed that the data adopted in an evaluated data library differ from the present results by more than experimental uncertainties.
Balibrea-Correa, J.*; Kimura, Atsushi; 133of others*
Nuclear Instruments and Methods in Physics Research A, 1064, p.169385_1 - 169385_13, 2024/07
Times Cited Count:2 Percentile:68.69(Instruments & Instrumentation)Casanovas-Hoste, A.*; Harada, Hideo; Kimura, Atsushi; 130 of others*
Physical Review Letters, 133(5), p.052702_1 - 052702_8, 2024/07
Times Cited Count:1 Percentile:58.36(Physics, Multidisciplinary)Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Katabuchi, Tatsuya*
European Physical Journal A, 60(5), p.120_1 - 120_14, 2024/05
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Nakayama, Shinsuke; Iwamoto, Osamu; Kimura, Atsushi
EPJ Web of Conferences, 294, p.07001_1 - 07001_6, 2024/04
Graphite is a candidate of moderator in innovative nuclear reactors such as molten salt reactors. Scattering of thermal neutrons by the moderator material has a significant impact on the reactor core design. To contribute to the development of innovative nuclear reactors, an evaluation method of thermal neutron scattering law for reactor grade graphite was studied. The inelastic scattering component due to lattice vibration was evaluated based on the phonon density of states computed with first-principles lattice dynamics simulations. The simulations were performed for ideal crystalline graphite. The coherent elastic scattering component due to crystal structure was evaluated based on neutron transmission and scattering experiments recently performed in the J-PARC/MLF facility. In comparison with the neutron transmission experiments, it was found that the quantification of small-angle neutron scattering due to structures larger than crystal, such as pores in graphite, is important. Based on the above methods, thermal neutron scattering law data for reactor-grade graphite at room temperature were evaluated.
Kimura, Atsushi; Endo, Shunsuke; Nakamura, Shoji
EPJ Web of Conferences, 294, p.01002_1 - 01002_7, 2024/04
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*
Journal of Nuclear Science and Technology, 61(4), p.459 - 477, 2024/04
Times Cited Count:1 Percentile:30.19(Nuclear Science & Technology)Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto
Nuclear Science and Engineering, 198(4), p.786 - 803, 2024/04
Times Cited Count:1 Percentile:30.19(Nuclear Science & Technology)Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Hirota, Katsuya*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.L041602_1 - L041602_4, 2024/04
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Alcayne, V.*; Kimura, Atsushi; 134 of others*
Radiation Physics and Chemistry, 217, p.111525_1 - 111525_11, 2024/04
Times Cited Count:5 Percentile:97.67(Chemistry, Physical)Wright, T.*; Harada, Hideo; Kimura, Atsushi; 121 of others*
European Physical Journal A, 60(3), p.70_1 - 70_11, 2024/03
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Amaducci, S.*; Harada, Hideo; Kimura, Atsushi; 130 of others*
Physical Review Letters, 132(12), p.122701_1 - 122701_8, 2024/03
Times Cited Count:2 Percentile:76.47(Physics, Multidisciplinary)Shigyo, Nobuhiro*; Kimura, Atsushi; Sano, Tadafumi*
JAEA-Conf 2023-001, 146 Pages, 2024/02
The 2022 Symposium on Nuclear Data was held at BLOSSOM CAF in Main Campus of Kindai University on November 17-18, 2022. The symposium was organized by the Nuclear Data Division of the Atomic Energy Society of Japan (AESJ) in cooperation with Investigation Committee on Nuclear Data in AESJ, Nuclear Science and Engineering Center of Japan Atomic Energy Agency, and High Energy Accelerator Research Organization. In the symposium, tutorials "The Future of Nuclear Reactor Physics Experimental Research in Japan" was proposed and held. Two sessions of lectures and discussions were held: "Recent Topics on Nuclear Data". In addition, recent research progress on experiments, nuclear theory, evaluation, benchmark, and applications were presented in the poster session. The total number of participants was 76 participants. Each oral and poster presentation was followed by an active question and answer session. This report consists of a total of 22 papers including 4 oral and 18 poster presentations.
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Katabuchi, Tatsuya*
JAEA-Conf 2023-001, p.74 - 79, 2024/02
Endo, Shunsuke; Kawamura, Shiori*; Okudaira, Takuya*; Yoshikawa, Hiromoto*; Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki
European Physical Journal A, 59(12), p.288_1 - 288_12, 2023/12
Times Cited Count:1 Percentile:30.87(Physics, Nuclear)no abstracts in English