Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okuizumi, Mao*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 111(3), p.034611_1 - 034611_6, 2025/03
Times Cited Count:0Nakamura, Satoshi; Ishii, Sho*; Kato, Hitoshi*; Ban, Yasutoshi; Hiruta, Kenta; Yoshida, Takuya; Uehara, Hiroyuki; Obata, Hiroki; Kimura, Yasuhiko; Takano, Masahide
Journal of Nuclear Science and Technology, 62(1), p.56 - 64, 2025/01
Times Cited Count:1 Percentile:62.55(Nuclear Science & Technology)A dissolution method for analyzing the elemental composition of fuel debris using the sodium peroxide (NaO
) fusion technique has been developed. Herein, two different types of simulated debris materials (such as solid solution of (Zr,RE)O
and molten core-concrete interaction products (MCCI)) were taken. At various temperatures, these debris materials were subsequently fused with Na
O
in crucibles, which are made of different materials, such as Ni, Al
O
, Fe, and Zr. Then, the fused samples are dissolved in nitric acid. Furthermore, the effects of the experimental conditions on the elemental composition analysis were evaluated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), which suggested the use of a Ni crucible at 923 K as an optimum testing condition. The optimum testing condition was then applied to the demonstration tests with Three Mile Island unit-2 (TMI-2) debris in a shielded concrete cell, thereby achieving complete dissolution of the debris. The elemental composition of TMI-2 debris revealed by the proposed dissolution method has good reproducibility and has an insignificant contradiction in the mass balance of the sample. Therefore, this newly developed reproducible dissolution method can be effectively utilized in practical applications by dissolving fuel debris and estimating its elemental composition.
Ishii, Yuta*; Sakakura, Terutoshi*; Ishikawa, Yoshihisa*; Kiyanagi, Ryoji; Lustikova, J.*; Aoyama, Takuya*; Ogushi, Kenya*; Wakabayashi, Yusuke*; Kimura, Hiroyuki*; Noda, Yukio*
Physical Review B, 110(18), p.184404_1 - 184404_7, 2024/11
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Endo, Shunsuke; Abe, Ryota*; Fujioka, Hiroyuki*; Ino, Takashi*; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kawamura, Shiori*; Kimura, Atsushi; Kitaguchi, Masaaki*; Kobayashi, Ryuju*; et al.
European Physical Journal A, 60(8), p.166_1 - 166_10, 2024/08
Times Cited Count:2 Percentile:0.00(Physics, Nuclear)Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Hirota, Katsuya*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.L041602_1 - L041602_4, 2024/04
Times Cited Count:1 Percentile:0.00(Physics, Nuclear)Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
Omokawa, Marina*; Kimura, Hiroyuki*; Hatsukawa, Yuichi*; Kawashima, Hidekazu*; Tsukada, Kazuaki; Yagi, Yusuke*; Naito, Yuki*; Yasui, Hiroyuki*
Bioorganic & Medicinal Chemistry, 97, p.117557_1 - 117557_6, 2024/01
Times Cited Count:0 Percentile:0.00(Biochemistry & Molecular Biology)Okudaira, Takuya*; Tani, Yuika*; Endo, Shunsuke; Doskow, J.*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kameda, Kento*; Kimura, Atsushi; Kitaguchi, Masaaki*; Luxnat, M.*; et al.
Physical Review C, 107(5), p.054602_1 - 054602_7, 2023/05
Times Cited Count:5 Percentile:71.53(Physics, Nuclear)no abstracts in English
Iimura, Shun*; Rosenbusch, M.*; Takamine, Aiko*; Tsunoda, Yusuke*; Wada, Michiharu*; Chen, S.*; Hou, D. S.*; Xian, W.*; Ishiyama, Hironobu*; Yan, S.*; et al.
Physical Review Letters, 130(1), p.012501_1 - 012501_6, 2023/01
Times Cited Count:12 Percentile:89.17(Physics, Multidisciplinary)Endo, Shunsuke; Okudaira, Takuya*; Abe, Ryota*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Oku, Takayuki; Sakai, Kenji; Shima, Tatsushi*; et al.
Physical Review C, 106(6), p.064601_1 - 064601_7, 2022/12
Times Cited Count:7 Percentile:63.01(Physics, Nuclear)no abstracts in English
Koga, Jun*; Takada, Shusuke*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Niinomi, Yudai*; Okudaira, Takuya*; et al.
Physical Review C, 105(5), p.054615_1 - 054615_5, 2022/05
Times Cited Count:7 Percentile:68.58(Physics, Nuclear)no abstracts in English
Kimura, Fumihito*; Yamamura, Sota*; Fujiwara, Kota*; Yoshida, Hiroyuki; Saito, Shimpei*; Kaneko, Akiko*; Abe, Yutaka*
Nuclear Engineering and Design, 389, p.111660_1 - 111660_11, 2022/04
Times Cited Count:4 Percentile:54.60(Nuclear Science & Technology)Okudaira, Takuya*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; Niinomi, Yudai*; Sakai, Kenji; et al.
Physical Review C, 104(1), p.014601_1 - 014601_6, 2021/07
Times Cited Count:7 Percentile:59.44(Physics, Nuclear)Nakanishi, Toshimichi*; Okuno, Mitsuru*; Yamasaki, Keiji*; Hong, W.*; Fujita, Natsuko; Nakamura, Toshio*; Horikawa, Yoshiyuki*; Sato, Eiichi*; Kimura, Haruo*; Tsutsumi, Hiroyuki*
Nagoya Daigaku Nendai Sokutei Kenkyu, 5, p.38 - 43, 2021/03
no abstracts in English
Go, Shintaro*; Ideguchi, Eiji*; Yokoyama, Rin*; Aoi, Nori*; Azaiez, F.*; Furutaka, Kazuyoshi; Hatsukawa, Yuichi; Kimura, Atsushi; Kisamori, Keiichi*; Kobayashi, Motoki*; et al.
Physical Review C, 103(3), p.034327_1 - 034327_8, 2021/03
Times Cited Count:4 Percentile:44.74(Physics, Nuclear)Yamamoto, Tomoki*; Okudaira, Takuya; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 101(6), p.064624_1 - 064624_8, 2020/06
Times Cited Count:18 Percentile:82.50(Physics, Nuclear)Hatsukawa, Yuichi*; Hayakawa, Takehito*; Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Sato, Tetsuya; Asai, Masato; Toyoshima, Atsushi; Tanimori, Toru*; Sonoda, Shinya*; Kabuki, Shigeto*; et al.
PLOS ONE (Internet), 13(12), p.e0208909_1 - e0208909_12, 2018/12
Times Cited Count:3 Percentile:25.98(Multidisciplinary Sciences)Imaging of Tc radioisotope was conducted using an electron tracking-Compton camera (ETCC).
Tc emits 204, 582, and 835 keV
rays, and was produced in the
Mo(p,n)
Tc reaction with a
Mo-enriched target. The recycling of the
Mo-enriched molybdenum trioxide was investigated, and the recycled yield of
Mo was achieved to be 70% - 90%. The images were obtained with each of the three
rays. Results showed that the spatial resolution increases with increasing
-ray energy, and suggested that the ETCC with high-energy
-ray emitters such as
Tc is useful for the medical imaging of deep tissue and organs in the human body.
Nakamura, Hironobu; Kitao, Takahiko; Yamada, Hiroyuki; Kono, Soma; Kimura, Takashi; Tasaki, Takashi
Proceedings of INMM 59th Annual Meeting (Internet), 9 Pages, 2018/07
Ito, Yuta*; Schury, P.*; Wada, Michiharu*; Arai, Fumiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Ishizawa, Satoshi*; Kaji, Daiya*; Kimura, Sota*; Koura, Hiroyuki; et al.
Physical Review Letters, 120(15), p.152501_1 - 152501_6, 2018/04
Times Cited Count:64 Percentile:92.65(Physics, Multidisciplinary)Masses of Es,
Fm and the transfermium nuclei
Md, and
No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed
neutron shell closure, have been directly measured using a multi-reflection time-of-flight mass spectrograph. The masses of
Es and
Md were measured for the first time. Using the masses of
Md as anchor points for
decay chains, the masses of heavier nuclei, up to
Bh and
Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter
derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed
neutron shell closure for Md and Lr.
Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.