Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakamura, Satoshi; Ishii, Sho*; Kato, Hitoshi*; Ban, Yasutoshi; Hiruta, Kenta; Yoshida, Takuya; Uehara, Hiroyuki; Obata, Hiroki; Kimura, Yasuhiko; Takano, Masahide
Journal of Nuclear Science and Technology, 62(1), p.56 - 64, 2025/01
Times Cited Count:1 Percentile:62.55(Nuclear Science & Technology)A dissolution method for analyzing the elemental composition of fuel debris using the sodium peroxide (NaO
) fusion technique has been developed. Herein, two different types of simulated debris materials (such as solid solution of (Zr,RE)O
and molten core-concrete interaction products (MCCI)) were taken. At various temperatures, these debris materials were subsequently fused with Na
O
in crucibles, which are made of different materials, such as Ni, Al
O
, Fe, and Zr. Then, the fused samples are dissolved in nitric acid. Furthermore, the effects of the experimental conditions on the elemental composition analysis were evaluated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), which suggested the use of a Ni crucible at 923 K as an optimum testing condition. The optimum testing condition was then applied to the demonstration tests with Three Mile Island unit-2 (TMI-2) debris in a shielded concrete cell, thereby achieving complete dissolution of the debris. The elemental composition of TMI-2 debris revealed by the proposed dissolution method has good reproducibility and has an insignificant contradiction in the mass balance of the sample. Therefore, this newly developed reproducible dissolution method can be effectively utilized in practical applications by dissolving fuel debris and estimating its elemental composition.
Alowasheeir, A.*; Eguchi, Miharu*; Fujita, Yoshitaka; Tsuchiya, Kunihiko; Wakabayashi, Ryutaro*; Kimura, Tatsuo*; Ariga, Katsuhiko*; Hatano, Kentaro*; Fukumitsu, Nobuyoshi*; Yamauchi, Yusuke*
Bulletin of the Chemical Society of Japan, 97(10), p.uoae099_1 - uoae099_7, 2024/10
Times Cited Count:2 Percentile:42.26(Chemistry, Multidisciplinary)no abstracts in English
Yamamoto, Hajime*; Ikeda, Osamu*; Honda, Takashi*; Kimura, Kenta*; Aoyama, Takuya*; Ogushi, Kenya*; Suzuki, Akio*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; et al.
Physical Review Materials (Internet), 8(9), p.094402_1 - 094402_6, 2024/09
Times Cited Count:2 Percentile:62.00(Materials Science, Multidisciplinary)Kajita, Yoichi*; Nagai, Takayuki*; Yamagishi, Shigetada*; Kimura, Kenta*; Hagihara, Masato; Kimura, Tsuyoshi*
Chemistry of Materials, 36(15), p.7451 - 7458, 2024/08
Times Cited Count:2 Percentile:62.00(Chemistry, Physical)Iwata, Takuma*; Kosa, Towa*; Nishioka, Yukimi*; Owada, Kiyotaka*; Sumida, Kazuki; Annese, E.*; Kakoki, Masaaki*; Kuroda, Kenta*; Iwasawa, Hideaki*; Arita, Masashi*; et al.
Scientific Reports (Internet), 14, p.127_1 - 127_8, 2024/01
Times Cited Count:6 Percentile:84.86(Multidisciplinary Sciences)Yamagishi, Shigetada*; Hayashida, Takeshi*; Misawa, Ryusuke*; Kimura, Kenta*; Hagihara, Masato; Murata, Tomoki*; Hirose, Sakyo*; Kimura, Tsuyoshi*
Chemistry of Materials, 35(2), p.747 - 754, 2023/01
Times Cited Count:8 Percentile:69.28(Chemistry, Physical)Hayashida, Takeshi*; Uemura, Yohei*; Kimura, Kenta*; Matsuoka, Satoshi*; Hagihara, Masato; Hirose, Sakyo*; Morioka, Hitoshi*; Hasegawa, Tatsuo*; Kimura, Tsuyoshi*
Physical Review Materials (Internet), 5(12), p.124409_1 - 124409_10, 2021/12
Times Cited Count:32 Percentile:82.93(Materials Science, Multidisciplinary)Kimura, Kenta*; Yagi, Naoki*; Hasegawa, Shunsuke*; Hagihara, Masato; Miyake, Atsushi*; Tokunaga, Masashi*; Cao, H.*; Masuda, Takatsugu*; Kimura, Tsuyoshi*
Inorganic Chemistry, 60(20), p.15078 - 15084, 2021/10
Times Cited Count:3 Percentile:14.30(Chemistry, Inorganic & Nuclear)Shikin, A. M.*; Estyunin, D. A.*; Klimovskikh, I. I.*; Filnov, S. O.*; Kumar, S.*; Schwier, E. F.*; Miyamoto, Koji*; Okuda, Taichi*; Kimura, Akio*; Kuroda, Kenta*; et al.
Scientific Reports (Internet), 10, p.13226_1 - 13226_13, 2020/08
Times Cited Count:71 Percentile:95.72(Multidisciplinary Sciences)Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.
Hirose, Kentaro; Nishio, Katsuhisa; Makii, Hiroyuki; Nishinaka, Ichiro*; Ota, Shuya*; Nagayama, Tatsuro*; Tamura, Nobuyuki*; Goto, Shinichi*; Andreyev, A. N.; Vermeulen, M. J.; et al.
Nuclear Instruments and Methods in Physics Research A, 856, p.133 - 138, 2017/06
Times Cited Count:5 Percentile:39.94(Instruments & Instrumentation)Katabuchi, Tatsuya*; Matsuhashi, Taihei*; Terada, Kazushi; Igashira, Masayuki*; Mizumoto, Motoharu*; Hirose, Kentaro; Kimura, Atsushi; Iwamoto, Nobuyuki; Hara, Kaoru*; Harada, Hideo; et al.
Physical Review C, 91(3), p.037603_1 - 037603_5, 2015/03
Times Cited Count:8 Percentile:48.41(Physics, Nuclear)Hara, Kaoru; Goko, Shinji*; Harada, Hideo; Hirose, Kentaro; Kimura, Atsushi; Kin, Tadahiro*; Kitatani, Fumito; Koizumi, Mitsuo; Nakamura, Shoji; Toh, Yosuke; et al.
JAEA-Conf 2014-002, p.88 - 92, 2015/02
Yamamoto, Masato*; Kimura, Akihiko*; Onizawa, Kunio; Yoshimoto, Kentaro*; Ogawa, Takuya*; Mabuchi, Yasuhiro*; Viehrig, H.-W.*; Miura, Naoki*; Soneda, Naoki*
Proceedings of 2014 ASME Pressure Vessels and Piping Conference (PVP 2014) (DVD-ROM), 7 Pages, 2014/07
The Master Curve (MC) approach for the fracture toughness reference temperature To is expected to be a powerful tool to ensure the reliability of long-term used RPV steels. In order to get sufficient number of data for the MC approach related to the present surveillance program for RPVs, the use of miniature specimens is important. The test technique for the miniature specimens (Mini-CT) of 4 mm thick had been verified the basic applicability of MC approach by means of Mini-CT for the determination of fracture toughness of typical Japanese RPV steels. A round robin (RR) program was organized to assure the robustness of the technique. As the third step of RR program, blinded tests were carried out. Precise material information was not provided to the participants. From the results obtained, the scatter range in was within the acceptable scatter range specified in the testing standard. The selection of testing temperature seems to give limited effect like that in larger specimens.
Hirose, Kentaro; Furutaka, Kazuyoshi; Hara, Kaoru; Harada, Hideo; Hori, Junichi*; Igashira, Masayuki*; Kamiyama, Takashi*; Katabuchi, Tatsuya*; Kimura, Atsushi; Kin, Tadahiro*; et al.
Nuclear Data Sheets, 119, p.48 - 51, 2014/05
Times Cited Count:1 Percentile:9.69(Physics, Nuclear)Nakamura, Shoji; Kimura, Atsushi; Kitatani, Fumito; Ota, Masayuki; Furutaka, Kazuyoshi; Goko, Shinji*; Hara, Kaoru; Harada, Hideo; Hirose, Kentaro; Kin, Tadahiro*; et al.
Nuclear Data Sheets, 119, p.143 - 146, 2014/05
Times Cited Count:10 Percentile:55.29(Physics, Nuclear)We have started the measurements of the neutron-capture cross sections for stable Pd nuclei as well as the radioactive
Pd. The neutron-capture cross-section measurements by the time-of flight method were performed using an apparatus called "Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI)" installed at the neutron Beam Line No.4 of the Materials and Life science experimental Facility (MLF) in the J-PARC. The neutron-capture cross sections of
Pd and
Pd have been measured in the neutron energy range from thermal to 300 eV. Some new information was obtained for resonances of these Pd nuclei.
Harada, Hideo; Ota, Masayuki; Kimura, Atsushi; Furutaka, Kazuyoshi; Hirose, Kentaro; Hara, Kaoru; Kin, Tadahiro*; Kitatani, Fumito; Koizumi, Mitsuo; Nakamura, Shoji; et al.
Nuclear Data Sheets, 119, p.61 - 64, 2014/05
Times Cited Count:19 Percentile:74.32(Physics, Nuclear)Kimura, Atsushi; Hirose, Kentaro; Nakamura, Shoji; Harada, Hideo; Hara, Kaoru; Hori, Junichi*; Igashira, Masayuki*; Kamiyama, Takashi*; Katabuchi, Tatsuya*; Kino, Koichi*; et al.
Nuclear Data Sheets, 119, p.150 - 153, 2014/05
Times Cited Count:5 Percentile:36.56(Physics, Nuclear)Hori, Junichi*; Yashima, Hiroshi*; Nakamura, Shoji; Furutaka, Kazuyoshi; Hara, Kaoru; Harada, Hideo; Hirose, Kentaro; Kimura, Atsushi; Kitatani, Fumito; Koizumi, Mitsuo; et al.
Nuclear Data Sheets, 119, p.128 - 131, 2014/05
Times Cited Count:4 Percentile:31.51(Physics, Nuclear)In this work, we measured the capture rays from the neutron resonances of
Se and
Se. A neutron time-of-flight method was adopted for the measurements with a 4
Ge spectrometer installed at the Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) in the J-PARC Material and Life science experimental Facility (MLF). The
-ray pulse-height spectra corresponding to the 27-eV resonance of
Se and the 113-, 212-, 291-, 342-, 690- and 864-eV resonances of
Se were obtained by gating on the TOF regions, respectively. The relative intensities of those primary transitions were derived and compared with the previous experimental data. For the 27-eV resonance of
Se, a strong primary transition to the 293-keV state was observed. As for
Se, the quite differences of the decay pattern were found between the resonances.
Kino, Koichi*; Furusaka, Michihiro*; Hiraga, Fujio*; Kamiyama, Takashi*; Kiyanagi, Yoshiaki*; Furutaka, Kazuyoshi; Goko, Shinji*; Hara, Kaoru; Harada, Hideo; Harada, Masahide; et al.
Nuclear Instruments and Methods in Physics Research A, 736, p.66 - 74, 2014/02
Times Cited Count:32 Percentile:90.83(Instruments & Instrumentation)