Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakayama, Masashi; Ishii, Eiichi; Hayano, Akira; Aoyagi, Kazuhei; Murakami, Hiroaki; Ono, Hirokazu; Takeda, Masaki; Mochizuki, Akihito; Ozaki, Yusuke; Kimura, Shun; et al.
JAEA-Review 2025-027, 80 Pages, 2025/09
The Horonobe Underground Research Laboratory Project is being pursued by the Japan Atomic Energy Agency to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2025, we continue R&D on "Study on near-field system performance in geological environment" and "Demonstration of repository design options". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we continue to obtain data from the full-scale engineered barrier system performance experiment, and work on the specifics of the full-scale engineered barrier system dismantling experiment. As for "Demonstration of repository design options", the investigation, design, and evaluation techniques are to be systemized at various scales, from the tunnel to the pit, by means of an organized set of evaluation methodologies for confinement performance at these respective scales. Preliminary borehole investigations will be conducted within a 500 m gallery, with the objectives of obtaining rock strength and rock permeability data, as well as surveying the extent of the excavation damaged zone surrounding the test tunnel via tomographic analysis. A planning study for the in-situ construction test will be conducted to investigate the construction of backfill material and watertight plugs. The volume of water inflow associated with the excavation of the 500 m gallery will be observed, and its magnitude will be compared with the range of water inflow predicted in the analysis. The test plan to determine the extent of the excavation damaged zone around the pit, which is planned to be constructed in the 500 m gallery, will be studied to determine the in-situ excavation damaged zone. In addition, the investigation and evaluation methods for the amount of water inflow from fractures and the extent of the excavation damaged zone around the pit will be organized. Concerning the construction and maintenance of the subsurface facilities, excavation of the West Access Shaft and the 500 m gallery will continue. It is anticipated that the construction of the facilities will be completed by the end of the fiscal year 2025. In addition, we continue R&D on the following three tasks in the Horonobe International Project; Task A: Solute transport experiment with model testing, Task B: Systematic integration of repository technology options, and Task C: Full-scale engineered barrier system dismantling experiment.
Ho(n,
)
Ho reactionsNakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 14 Pages, 2025/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)
Hf(n,
)
Hf reaction measurementKawamura, Shiori*; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Kitaguchi, Masaaki*; Nakamura, Shoji; Okudaira, Takuya*; Rovira Leveroni, G.; Shimizu, Hirohiko*; et al.
EPJ Web of Conferences, 329, p.05002_1 - 05002_3, 2025/06
no abstracts in English
-rays emitted from
S(n,
)
S reaction with polarized neutronsEndo, Shunsuke; Fujioka, Hiroyuki*; Ide, Ikuo*; Iinuma, Masataka*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Kameda, Kento*; Kawamura, Shiori*; Kimura, Atsushi; Kitaguchi, Masaaki*; et al.
EPJ Web of Conferences, 329, p.05003_1 - 05003_3, 2025/06
no abstracts in English
Nakamura, Shoji; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi; Shibahara, Yuji*
KURNS Progress Report 2024, P. 31, 2025/06
no abstracts in English
Fe(n,
)
FeNakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 62(3), p.300 - 307, 2025/03
Times Cited Count:1 Percentile:37.73(Nuclear Science & Technology)
rays in the
La(
)
La reactionOkuizumi, Mao*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 111(3), p.034611_1 - 034611_6, 2025/03
Times Cited Count:0 Percentile:78.58(Physics, Nuclear)
I neutron capture cross-section in the keV neutron regionRovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*
Journal of Nuclear Science and Technology, 12 Pages, 2025/00
Times Cited Count:0 Percentile:0.00
Er(n,
)
Er and
Hf(n,
)
Hf reactionsNakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 14 Pages, 2025/00
Times Cited Count:1 Percentile:81.49(Nuclear Science & Technology)
Sc,
Cu,
Zn,
Ag, and
InNakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 61(11), p.1415 - 1430, 2024/11
Times Cited Count:2 Percentile:62.28(Nuclear Science & Technology)Neutron capture cross-sections of nuclides targeted for decommissioning are necessary to contribute to the evaluation of radioactivity produced. The present study,
Sc,
Cu,
Zn,
Ag and
In nuclides were selected as target ones, and their thermal-neutron capture cross-sections were measured by an activation method at Kyoto University Research Reactor. The thermal-neutron capture cross-sections were obtained as follows: 27.18
0.28 barn for
Sc(n,
)
Sc, 4.34
0.06 barn for
Cu(n,
)
Cu, 0.719
0.011 barn for
Zn(n,
)
Zn, 4.05
0.05 barn for
Ag(n,
)
Ag and 8.53
0.27 barn for
In(n,
)
In
. The results for
Sc and
Zn nuclides supported evaluated values within the limits of uncertainties, while those for the other nuclides were slightly different from evaluated ones. The obtained results are useful not only for the evaluation of production amount, but also for the monitor selection other than Au and Co by considering those nuclides as flux monitors.
Ozaki, Yusuke; Aoyagi, Kazuhei; Ono, Hirokazu; Kimura, Shun
Proceedings of 4th International Conference on Coupled Processes in Fractured Geological Media; Observation, Modeling, and Application (CouFrac2024) (Internet), 10 Pages, 2024/11
Electrical resistivity tomography was repeatedly carried out to investigate the changes of the electrical resistivity distribution around 350m Niche No. 2 and No. 4 in the Horonobe Underground Research Laboratory. The electrical resistivity around Niche No. 2 did not change so much after the high resistive zone appeared around the tunnel by the excavation under opened condition during the studied period. Around Niche No. 4, the electrical resistivity was investigated under closed condition by engineered barrier system (EBS) where the EBS and surrounding rocks were disturbed artificially by water injection and heating. Our results could capture the change in the distribution of electrical resistivity due to the artificial disturbances in and around of Niche No. 4. These results would help us to understand the time lapse behavior of excavation damaged zone and re-saturation process in and around the EBS from the construction to the closure.
Ir at ANNRI MLF J-PARCPatwary, K.; Segawa, Mariko; Maeda, Makoto; Toh, Yosuke; Endo, Shunsuke; Nakamura, Shoji; Rovira Leveroni, G.; Kimura, Atsushi
Journal of Nuclear Science and Technology, 61(10), p.1385 - 1396, 2024/10
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Endo, Shunsuke; Abe, Ryota*; Fujioka, Hiroyuki*; Ino, Takashi*; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kawamura, Shiori*; Kimura, Atsushi; Kitaguchi, Masaaki*; Kobayashi, Ryuju*; et al.
European Physical Journal A, 60(8), p.166_1 - 166_10, 2024/08
Times Cited Count:3 Percentile:74.10(Physics, Nuclear)Nakamura, Shoji; Endo, Shunsuke; Rovira Leveroni, G.; Kimura, Atsushi; Shibahara, Yuji*
KURNS Progress Report 2023, P. 46, 2024/07
The present work is an attempt to measure the thermal-neutron capture cross-sections for some nuclides which are of importance in decommissioning to evaluate produced radioactivity. This work selected some of objective nuclides for decommissioning, such as
Fe,
Er and
Hf, and measured thermal-neutron capture cross-sections for these nuclides by a neutron activation method at Kyoto University Research Reactor. The present results were obtained as follows:1.23
0.03 barn for
Fe(n,
)
Fe reaction, 8.19
0.35 barn for
Er(n,
)
Er reaction and 13.57
0.14 barn for
Hf(n,
)
Hf reaction. As a by-product, the measurement of Hf sample also presented 0.427
0.006 barn for
Hf(n,
)
Hf reaction. It has been revealed that the data adopted in an evaluated data library differ from the present results by more than experimental uncertainties.
Kikuchi, Hirohito*; Uda, Toshiaki*; Hayashi, Daisuke*; Emori, Minoru*; Kimura, Shun
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 31(1), p.11 - 20, 2024/06
no abstracts in English
I and
I using the NaI(Tl) spectrometer of the ANNRI beamline at J-PARCRovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Katabuchi, Tatsuya*
European Physical Journal A, 60(5), p.120_1 - 120_14, 2024/05
Times Cited Count:2 Percentile:39.40(Physics, Nuclear)Wakai, Eiichi; Noto, Hiroyuki*; Shibayama, Tamaki*; Furuya, Kazuyuki*; Ando, Masami*; Kamada, Takaharu*; Ishida, Taku*; Makimura, Shunsuke*
Materials Characterization, 211, p.113881_1 - 113881_10, 2024/05
The microstructures and mechanical properties of bcc iron-based high entropy alloy (HEA) Fe-20Mn-15Cr-10V-10Al-2.5C (in at%) without Co and Ni elements have been investigated for applications in fields such as accelerator-target system, nuclear reactors and magnetic motors in aircraft and automobiles. This alloy was normalized at 1150
C for 2 hr and then water quenched, and it was heated at 800
C for 10 min and then water quenched. The alloy had a bcc-phase and vanadium carbides with 2-3
m arranging along grain boundaries, and the Vickers hardness was 520 Hv, harder than pure tungsten. Magnetic domain structure was observed in phase differential contrast method in scanning transmission electron microscope, and the micro-size magnetic domains in grain and sub micro size ones were formed near surface, and it is attractive to the magnetic motor field application. Element distribution in nano scale (20 nm) was observed in matrix, and the presence of crystal lattice disorder in the atomic level region was seen. Very high performance for radiation resistance was confirmed with no irradiation hardening at 300 and 500
C to 1 dpa. It can be speculated that this is due to irradiation-induced nanoscale concentration changes and strain relaxation in the HEA. These properties are very attractive in application of several fields.
Kimura, Atsushi; Endo, Shunsuke; Nakamura, Shoji
EPJ Web of Conferences, 294, p.01002_1 - 01002_7, 2024/04
Am neutron capture cross section measurement using the NaI(Tl) spectrometer of the ANNRI beamline of J-PARCRovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*
Journal of Nuclear Science and Technology, 61(4), p.459 - 477, 2024/04
Times Cited Count:2 Percentile:18.87(Nuclear Science & Technology)
TaEndo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto
Nuclear Science and Engineering, 198(4), p.786 - 803, 2024/04
Times Cited Count:1 Percentile:18.87(Nuclear Science & Technology)