Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Computational chemical analysis of Eu(III) and Am(III) complexes with pnictogen-donor ligands using DFT calculations

Kimura, Taiki*; Kaneko, Masashi; Watanabe, Masayuki; Miyashita, Sunao*; Nakashima, Satoru*

Dalton Transactions (Internet), 47(42), p.14924 - 14931, 2018/11

 Times Cited Count:4 Percentile:36.25(Chemistry, Inorganic & Nuclear)

We demonstrated density functional calculations of Eu(III) and Am(III) complexes with pnictogen-donor (X) ligands, CH$$_{3}$$)$$_{2}$$X-CH$$_{2}$$-CH$$_{2}$$-X(CH$$_{3}$$)$$_{2}$$ (X = N, P, As and Sb). We investigated the optimized structures of the cmoplexes and the Gibbs energy differences in the complex formation reactions. Those results indicated that the N- and P-donor ligands have Am(III) ion selectivity over Eu(III) ion, especially, the P-donor ligand showed the highest selectivity. The tendency of the Am(III)/Eu(III) selectivity by the pnictogen-dono ligands was found to be comparable to that of soft acid classification in hard and soft acids and bases rule. Mulliken's spin population analysis indicated that the bonding property between the metal ion and the pnictogen atoms correlated with the Am(III)/Eu(III) selectivity. In particular, the participation of f-orbital electrons of the metal ion in the covalency was indicated to have an important role for the selectivity.

Journal Articles

First direct mass measurements of nuclides around $$Z$$ = 100 with a multireflection time-of-flight mass spectrograph

Ito, Yuta*; Schury, P.*; Wada, Michiharu*; Arai, Fumiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Ishizawa, Satoshi*; Kaji, Daiya*; Kimura, Sota*; Koura, Hiroyuki; et al.

Physical Review Letters, 120(15), p.152501_1 - 152501_6, 2018/04

 Times Cited Count:47 Percentile:95.52(Physics, Multidisciplinary)

Masses of $$^{246}$$Es, $$^{251}$$Fm and the transfermium nuclei $$^{249-252}$$Md, and $$^{254}$$No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed $$N=152$$ neutron shell closure, have been directly measured using a multi-reflection time-of-flight mass spectrograph. The masses of $$^{246}$$Es and $$^{249,250,252}$$Md were measured for the first time. Using the masses of $$^{249,250}$$Md as anchor points for $$alpha$$ decay chains, the masses of heavier nuclei, up to $$^{261}$$Bh and $$^{266}$$Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter $$delta_{2n}$$ derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed $$N=152$$ neutron shell closure for Md and Lr.

Journal Articles

Observation of doubly-charged ions of francium isotopes extracted from a gas cell

Schury, P.*; Wada, Michiharu*; Ito, Yuta*; Kaji, Daiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Kimura, Sota*; Koura, Hiroyuki; MacCormick, M.*; Miyatake, Hiroari*; et al.

Nuclear Instruments and Methods in Physics Research B, 407, p.160 - 165, 2017/06

 Times Cited Count:9 Percentile:79.25(Instruments & Instrumentation)

Various isotopes of Ac, Ra, Fr, and Rn were produced by fusion-evaporation reactions using a $$^{48}$$Ca beam. The energetic ions were stopped in and extracted from a helium gas cell. The extracted ions were identified using a multi-reflection time-of-fight mass spectrograph. In all cases, it was observed that the predominant charge state for the extracted ions, including the alkali Fr, was 2+.

Journal Articles

First online multireflection time-of-flight mass measurements of isobar chains produced by fusion-evaporation reactions; Toward identification of superheavy elements via mass spectroscopy

Schury, P.*; Wada, Michiharu*; Ito, Yuta*; Kaji, Daiya*; Arai, Fumiya*; MacCormick, M.*; Murray, I.*; Haba, Hiromitsu*; Jeong, S.*; Kimura, Sota*; et al.

Physical Review C, 95(1), p.011305_1 - 011305_6, 2017/01

AA2016-0638.pdf:0.71MB

 Times Cited Count:33 Percentile:96.3(Physics, Nuclear)

Using a multireflection time-of-flight mass spectrograph located after a gas cell coupled with the gas-filled recoil ion separator GARIS-II, the masses of several $$alpha$$-decaying heavy nuclei were directly and precisely measured. The nuclei were produced via fusion-evaporation reactions and separated from projectilelike and targetlike particles using GARIS-II before being stopped in a helium-filled gas cell. Time-of-flight spectra for three isobar chains, $$^{204}$$Fr-$$^{204}$$Rn-$$^{204}$$At-$$^{204}$$Po, $$^{205}$$Fr- $$^{205}$$Rn-$$^{205}$$At-$$^{205}$$Po-$$^{205}$$Bi, and $$^{206}$$Fr-$$^{206}$$Rn-$$^{206}$$At, were observed. Precision atomic mass values were determined for $$^{204-206}$$Fr, $$^{204,205}$$Rn, and $$^{204,205}$$At. Identifications of $$^{205}$$Bi, $$^{204,205}$$Po, $$^{206}$$Rn, and $$^{206}$$At were made with N$$leq$$10 detected ions, representing the next step toward use of mass spectrometry to identify exceedingly low-yield species such as superheavy element ions.

Oral presentation

Construction of chemical bonding database for development of separation prediction code of minor-actinides

Kaneko, Masashi; Kimura, Taiki; Watanabe, Masayuki; Miyashita, Sunao*; Nakashima, Satoru*

no journal, , 

We aim to developt the prediction code for separation performance of minor-actinides from lanthanides. In this study, we constructed a chemical bonding database of Am and Eu with Group 15 and 16 element donor ligands. As the result of energy analysis using density functional theory calculations, the trend of separation behavior of Am from Eu with group 15 and 16 donor ligands correlated with the trend of soft acid classification of hard and soft acids and bases principle. As the result of bonding analysis, the donor ligands which strongly bond to Am were indicated to possess the high selectivity to Am.

5 (Records 1-5 displayed on this page)
  • 1