Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High sensitivity of a future search for effects of $$P$$-odd/$$T$$-odd interactions on the 0.75 eV $$p$$-wave resonance in $$overrightarrow{n}$$+$$^{139}overrightarrow{textrm{La}}$$ forward transmission determined using a pulsed neutron beam

Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Hirota, Katsuya*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.

Physical Review C, 109(4), p.L041602_1 - L041602_4, 2024/04

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 4; The Muon Facility

Higemoto, Wataru; Kadono, Ryosuke*; Kawamura, Naritoshi*; Koda, Akihiro*; Kojima, Kenji*; Makimura, Shunsuke*; Matoba, Shiro*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Strasser, P.*

Quantum Beam Science (Internet), 1(1), p.11_1 - 11_24, 2017/06

A muon experimental facility, known as the Muon Science Establishment (MUSE), is one of the user facilities at the Japan Proton Accelerator Research Complex, along with those for neutrons, hadrons, and neutrinos. The MUSE facility is integrated into the Materials and Life Science Facility building in which a high-energy proton beam that is shared with a neutron experiment facility delivers a variety of muon beams for research covering diverse scientific fields. In this review, we present the current status of MUSE, which is still in the process of being developed into its fully fledged form.

Journal Articles

Tuning of ultra-slow muon transport system

Adachi, Taihei*; Ikedo, Yutaka*; Nishiyama, Kusuo*; Yabuuchi, Atsushi*; Nagatomo, Takashi*; Strasser, P.*; Ito, Takashi; Higemoto, Wataru; Kojima, Kenji*; Makimura, Shunsuke*; et al.

JPS Conference Proceedings (Internet), 8, p.036017_1 - 036017_4, 2015/09

JAEA Reports

Internship using nuclear facilities in Oarai Research and Development Center

Takemoto, Noriyuki; Itagaki, Wataru; Kimura, Nobuaki; Ishitsuka, Etsuo; Nakatsuka, Toru; Hori, Naohiko; Ooka, Makoto; Ito, Haruhiko

JAEA-Review 2013-063, 34 Pages, 2014/03

JAEA-Review-2013-063.pdf:8.46MB

Nuclear energy is important from a viewpoint of economy and energy security in Japan. However, the lack of nuclear engineers and scientists in future is concerned after the sever accident of TEPCO's Fukushima Daiichi Nuclear Power Station has occurred. Institute of National Colleges of Technology planned to carry out training programs for human resource development of nuclear energy field including on-site training in nuclear facilities. Oarai Research and Development Center in Japan Atomic Energy Agency cooperatively carried out an internship for nuclear disaster prevention and safety utilizing the nuclear facilities such as the JMTR. Thirty two students joined in total in the internship from FY 2011 to FY2013. In this paper, contents and results of the internship are reported.

Journal Articles

Spin-orbital short-range order on a honeycomb-based lattice

Nakatsuji, Satoru*; Kuga, Kentaro*; Kimura, Kenta*; Satake, Ryuta*; Katayama, Naoyuki*; Nishibori, Eiji*; Sawa, Hiroshi*; Ishii, Rieko*; Hagiwara, Masayuki*; Bridges, F.*; et al.

Science, 336(6081), p.559 - 563, 2012/05

 Times Cited Count:114 Percentile:95.29(Multidisciplinary Sciences)

Frustrated magnetic materials can remain disordered to the lowest temperatures. Such is the case for Ba$$_3$$CuSb$$_2$$O$$_9$$, which is magnetically anisotropic at the atomic scale but curiously isotropic on mesoscopic length and time scales. We find that the frustration on the triangular lattice is imprinted in a nanostructured honeycomb lattice of Cu$$^{2+}$$ ions that resists a coherent static Jahn-Teller distortion. The resulting two-dimensional random-bond spin-1/2 system on the honeycomb lattice has a broad spectrum of spin-dimer like excitations and low-energy spin degrees of freedom that retain.

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2010 (Joint research)

Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.

JAEA-Technology 2011-031, 123 Pages, 2012/01

JAEA-Technology-2011-031.pdf:16.08MB

The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.

Journal Articles

J-PARC muon facility, MUSE

Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Takeshita, Soshi*; Kobayashi, Yasuo*; et al.

Journal of Physics; Conference Series, 225, p.012036_1 - 012036_7, 2010/06

 Times Cited Count:9 Percentile:92.69(Physics, Applied)

Journal Articles

J-PARC decay muon channel construction status

Strasser, P.*; Shimomura, Koichiro*; Koda, Akihiro*; Kawamura, Naritoshi*; Fujimori, Hiroshi*; Makimura, Shunsuke*; Kobayashi, Yasuo*; Nakahara, Kazutaka*; Kato, Mineo*; Takeshita, Soshi*; et al.

Journal of Physics; Conference Series, 225, p.012050_1 - 012050_8, 2010/06

 Times Cited Count:12 Percentile:95.19(Physics, Applied)

Journal Articles

Birth of an intense pulsed muon source, J-PARC MUSE

Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Kadono, Ryosuke*; Kato, Mineo*; et al.

Physica B; Condensed Matter, 404(5-7), p.957 - 961, 2009/04

 Times Cited Count:12 Percentile:47.73(Physics, Condensed Matter)

The muon science facility (MUSE) is one of the experimental areas of the J-PARC. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008.

Journal Articles

J-PARC muon control system

Higemoto, Wataru; Shimomura, Koichiro*; Kobayashi, Yasuo*; Makimura, Shunsuke*; Miyake, Yasuhiro*; Kai, Tetsuya; Sakai, Kenji

Nuclear Instruments and Methods in Physics Research A, 600(1), p.179 - 181, 2009/02

 Times Cited Count:0 Percentile:0.01(Instruments & Instrumentation)

At the J-PARC MLF muon science facility (MUSE), muon experimental instruments are operated by means of a Muon Control System. The following are subject to the Muon Control System: (1) Muon production target and the beam scrapers, (2) M1/M2 line air-conditioning system, (3) Cryogenic system for the superconducting solenoid magnet, (4) Muon secondary line vacuum system, (5) Muon secondary line magnets, and (6) Muon beam blockers and related safety instruments. Details of the muon control system are described.

Journal Articles

Status of J-PARC muon science facility at the year of 2005

Miyake, Yasuhiro*; Nishiyama, Kusuo*; Kawamura, Naritoshi*; Makimura, Shunsuke*; Strasser, P.*; Shimomura, Koichiro*; Beveridge, J. L.*; Kadono, Ryosuke*; Fukuchi, Koichi*; Sato, Nobuhiko*; et al.

Physica B; Condensed Matter, 374-375, p.484 - 487, 2006/03

 Times Cited Count:6 Percentile:31.27(Physics, Condensed Matter)

The construction of the Materials and Life Science building was started in the beginning of the fiscal year of 2004. After commissioning of the accelerator and beam transport sections in 2008, muon beams will be available for users in 2009. In this letter, the latest construction status of the J-PARC Muon Science Facility is reported.

Journal Articles

J-PARC muon science facility with use of 3GeV proton beam

Miyake, Yasuhiro*; Kawamura, Naritoshi*; Makimura, Shunsuke*; Strasser, P.*; Shimomura, Koichiro*; Nishiyama, Kusuo*; Beveridge, J. L.*; Kadono, Ryosuke*; Sato, Nobuhiko*; Fukuchi, Koichi*; et al.

Nuclear Physics B; Proceedings Supplements, 149, p.393 - 395, 2005/12

The J-PARC muon science experimental area is planned to be located in the integrated building of the facility for materials and life science study. One muon target will be installed upstream of the neutron target. The main feature of the facility is introduced.

Oral presentation

Anomalous magnetic state in UPt$$_3$$ at very low temperature

Higemoto, Wataru; Sato, Kazuhiko*; Ito, Takashi; Nishida, Nobuhiko*; Oishi, Kazuki*; Heffner, R. H.; Haga, Yoshinori; Yamamoto, Etsuji; Kimura, Noriaki*; Onuki, Yoshichika; et al.

no journal, , 

The unconventional superconductivity in heavy fermion UPt$$_3$$ attracted much interest. In recent neutron experiment, the narrowing of the AF Bragg peak at low temperature was observed, from which they suggest that a quasistatic AF long range order is realized below 20 mK. We have extended ZF-$$mu$$SR measurement down to 8 mK to investigate the anomalous magnetic state over the very low temperature region. In our ZF-$$mu$$SR, there is no significant change in the muon spinrelaxation rate down to 8 mK. The result suggests the absence of static or quasistaticmagnetic order over the relevant temperature range.

Oral presentation

Mechanical and hydrological properties of incoming sediments at the Japan Trench and the evolution of the weak decollement

Shimizu, Mayuko; Tanikawa, Wataru*; Hamada, Yohei*; Kameda, Jun*; Yamaguchi, Asuka*; Kimura, Gaku*

no journal, , 

no abstracts in English

Oral presentation

Electrochemical behavior of pure copper under hydrogen sulfide injection

Kitayama, Ayami; Taniguchi, Naoki; Kimura, Wataru*; Kajiyama, Hiroshi*

no journal, , 

no abstracts in English

Oral presentation

Corrosion behavior of copper in environments containing sulfides

Watari, Shingo*; Kitayama, Ayami; Mitsui, Seiichiro; Taniguchi, Naoki; Kimura, Wataru*; Kajiyama, Hiroshi*

no journal, , 

The application of pure copper is being considered for the purpose of extending the life-time of disposal canisters in the direct disposal of spent fuel. Pure copper generally shows little corrosion development in aqueous solution environments with low oxygen concentrations due to its thermodynamic stability, but pure copper loses thermodynamic stability and corrosion develops depending on the sulfides conditions. In this study, immersion tests and U-bend tests were conducted to understand the corrosion progress behavior and stress corrosion cracking behavior of pure copper under the condition of sparging gas with various hydrogen sulfide concentrations to simulate the disposal environment where sulfide exists.

16 (Records 1-16 displayed on this page)
  • 1