Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
King, G. E.*; Ahadi, F.*; Sueoka, Shigeru; Herman, F.*; Anderson, L.*; Gautheron, C.*; Tsukamoto, Sumiko*; Stalder, N.*; Biswas, R.*; Fox, M.*; et al.
Geology, 51(2), p.131 - 135, 2023/02
Ogata, Manabu; King, G. E.*; Herman, F.*; Sueoka, Shigeru
Earth and Planetary Science Letters, 591, p.117607_1 - 117607_14, 2022/08
Times Cited Count:0 Percentile:0.01(Geochemistry & Geophysics)Optically stimulated luminescence (OSL)-thermometry can be used to reconstruct the thermal structure in slowly denuded regions where infrared stimulated luminescence (IRSL) signals of samples obtained from deep boreholes are measured and evaluated with depth. Until now, only one study has explored this approach, using a target mineral of Na-feldspar. In this study, we applied multi-OSL-thermometry to K-feldspar obtained from deep borehole core samples (MIZ-1) drilled at the Tono region, central Japan, which is a well-documented thermally stable crustal environment. The inverted temperature for the IRSL 50 C of the samples at a depth of
1 km (
40
C) were consistent with the in-situ temperature. The results suggest that the application of OSL-thermometry to K-feldspar in a borehole is useful to reconstruct the paleothermal condition.
Kawakami, Tetsuo*; Sueoka, Shigeru; Yokoyama, Tatsunori; Kagami, Saya; King, G. E.*; Herman, F.*; Tsukamoto, Sumiko*; Tagami, Takahiro*
Island Arc, 30(1), p.e12414_1 - e12414_11, 2021/01
Times Cited Count:3 Percentile:42.47(Geosciences, Multidisciplinary)King, G. E.*; Tsukamoto, Sumiko*; Herman, F.*; Biswas, R. H.*; Sueoka, Shigeru; Tagami, Takahiro*
Geochronology (Internet), 2(1), p.1 - 15, 2020/01
no abstracts in English
Fallon, P.*; Rodriguez-Vieitez, E.*; Macchiavelli, A. O.*; Gade, A.*; Tostevin, J. A.*; Adrich, P.*; Bazin, D.*; Bowen, M.*; Campbell, C. M.*; Clark, R. M.*; et al.
Physical Review C, 81(4), p.041302_1 - 041302_5, 2010/04
Times Cited Count:38 Percentile:88.44(Physics, Nuclear)no abstracts in English
Ogata, Manabu; King, G. E.*; Herman, F.*; Sueoka, Shigeru; Yamada, Ryuji*; Omura, Kentaro*
no journal, ,
no abstracts in English
Ogata, Manabu; King, G. E.*; Herman, F.*; Yamada, Ryuji*; Omura, Kentaro*; Sueoka, Shigeru
no journal, ,
Optically stimulated luminescence (OSL) thermochronometry is a tool for constraining cooling histories in low-temperature domains (several tens of degree Celsius) during the past 10-100 kyr. This method is currently applied only to rapidly denuded regions (about 5 mm/yr), because luminescence signals in slowly denuded regions saturate before the rocks are exhumated to the surface. However, cooling histories in slowly denuded regions may be constrained if unsaturated samples are obtained from deep boreholes. We applied multi-OSL-thermochronometry to the deep borehole core drilled at the Rokko Mountains, Japan, where slow denudation rates (0.1-1.0 mm/yr) are expected from previous studies. We used the Kabutoyama core collected by National Research Institute for Earth Science and Disaster Resilience. The total length of Kabutoyama core is 1,313 m and we collected the samples at 408, 642, 818 and 1048 m for OSL-thermochronometry. We found that the sample temperatures remained around the present ambient temperature at each depth for the last 0.1 Myr, indicating that the Rokko Mountains is topographically stable, which was consistent with previous findings. Thus, the thermal denudation history of slowly denuded regions may be constrained by multi-OSL-thermochronometry using samples from deep borehole cores. However, the denudation rates in the Rokko Mountains were too low and could not be determined by this method.
Bartz, M.*; King, G. E.*; Anderson, L.*; Herman, F.*; Sueoka, Shigeru; Tsukamoto, Sumiko*; Tagami, Takahiro*
no journal, ,
King, G. E.*; Ahadi, F.*; Sueoka, Shigeru; Herman, F.*; Anderson, L.*; Gautheron, C.*; Tsukamoto, Sumiko*; Stalder, N.*; Biswas, R.*; Fox, M.*; et al.
no journal, ,
Sueoka, Shigeru; Kawakami, Tetsuo*; Suzuki, Kota*; Kagami, Saya; Yokoyama, Tatsunori; Nagata, Mitsuhiro; Yamazaki, Ayu*; Higashino, Fumiko*; King, G. E.*; Tsukamoto, Sumiko*; et al.
no journal, ,
Young plutons of 10-0.8 Ma, including the world's youngest Kurobegawa pluton, are exposed in the Kurobe area of the Hida Range, central Japan, indicating rapid rock uplift and exhumation in the Quaternary. However, reconstructing the exhumation history has been challenging because interpretations of the thermochronologic data are difficult due to the complicated, recent and active thermal history/structure. Here we are determining the exhumation history by estimating formation depths and ages of the young plutons based on Al-in-Hb geobarometry and zircon U-Pb geochronometry, respectively. At JpGU2021, we reported the preliminary results based on three datapoints from the ~5 Ma plutons and one datum from the ~0.8 Ma pluton, suggesting the three following interpretations: (1) formation depths of ~5 Ma and ~0.8 Ma plutons were estimated to be ~6-9 km, which indicates an increase of the exhumation rate after ~0.8 Ma, (2) mean exhumation rate since ~0.8 Ma was computed at 8-10 mm/yr in the Baba-dani area, (3) the formation depths are uniform in the E-W direction, disagreeing with the eastward tilting model. As of January 2022, we have obtained 14 datapoints in total: five from the ~5 Ma plutons, two from the ~2-1 Ma plutons, five from the ~0.8 Ma plutons, and two from the 65 Ma plutons. These additional data are basically consistent with the previous data, reinforcing the three interpretations above. Recently, new uplift models of the Kurobe area were proposed, in addition to the eastward tilting model. Ito et al. (2021) suggested that the Kurobegawa pluton is a resurgent pluton of the Jiigatake caldera and was uplifted by the resurgence. Kawasaki (2021) proposed that displacements related to the E-W compression are localized along the Kurobe area due to the high geothermal gradient caused by presence of thermal fluid interstratified layers. We are planning to discuss consistency between our data and these two models.
Ogata, Manabu; King, G. E.*; Herman, F.*; Sueoka, Shigeru
no journal, ,
no abstracts in English
Ogata, Manabu; King, G. E.*; Herman, F.*; Sueoka, Shigeru
no journal, ,
no abstracts in English
King, G. E.*; Wen, X.*; Bartz, M.*; Anderson, L.*; Bossin, L.*; Tsukamoto, Sumiko*; Li, Y.*; Herman, F.*; Ogata, Manabu; Sueoka, Shigeru
no journal, ,
Bartz, M.*; King, G. E.*; Herman, F.*; Anderson, L.*; Sueoka, Shigeru; Tsukamoto, Sumiko*; Tagami, Takahiro*
no journal, ,