Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Gamma radiation resistance of spin Seebeck devices

Yagmur, A.*; Uchida, Kenichi*; Ihara, Kazuki*; Ioka, Ikuo; Kikkawa, Takashi*; Ono, Madoka*; Endo, Junichi*; Kashiwagi, Kimiaki*; Nakashima, Tetsuya*; Kirihara, Akihiro*; et al.

Applied Physics Letters, 109(24), p.243902_1 - 243902_4, 2016/12

 Percentile:100(Physics, Applied)

Thermoelectric devices based on the spin Seebeck effect (SSE) were irradiated with gamma ($$gamma$$) rays with the total dose of around 3$$times$$10$$^{5}$$ Gy in order to investigate the $$gamma$$-radiation resistance of the devices. To demonstrate this, Pt/Ni$$_{0.2}$$Zn$$_{0.3}$$Fe$$_{2.5}$$O$$_{4}$$/Glass and Pt/Bi$$_{0.1}$$Y$$_{2.9}$$Fe$$_{5}$$O$$_{12}$$/Gd$$_{3}$$Ga$$_{5}$$O$$_{12}$$ SSE devices were used. We confirmed that the thermoelectric, magnetic, and structural properties of the SSE devices are not affected by the $$gamma$$-ray irradiation. This result demonstrates that SSE devices are applicable to thermoelectric generation even in high radiation environments.

Journal Articles

Thermoelectric generation based on spin Seebeck effects

Uchida, Kenichi*; Adachi, Hiroto; Kikkawa, Takashi*; Kirihara, Akihiro*; Ishida, Masahiko*; Yorozu, Shinichi*; Maekawa, Sadamichi; Saito, Eiji*

Proceedings of the IEEE, 104(10), p.1946 - 1973, 2016/10

 Times Cited Count:74 Percentile:0.57(Engineering, Electrical & Electronic)

Journal Articles

Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films

Kirihara, Akihiro*; Kondo, Koichi*; Ishida, Masahiko*; Ihara, Kazuki*; Iwasaki, Yuma*; Someya, Hiroko*; Matsuba, Asuka*; Uchida, Kenichi*; Saito, Eiji; Yamamoto, Naoharu*; et al.

Scientific Reports (Internet), 6, p.23114_1 - 23114_7, 2016/03

 Times Cited Count:26 Percentile:7.97(Multidisciplinary Sciences)

Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni$$_{0.2}$$Zn$$_{0.3}$$Fe$$_{2.5}$$O$$_4$$ film which was formed on a flexible plastic sheet using a spray-coating method known as ferrite plating. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin- current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

Journal Articles

Longitudinal spin Seebeck effect; From fundamentals to applications

Uchida, Kenichi*; Ishida, Masahiko*; Kikkawa, Takashi*; Kirihara, Akihiro*; Murakami, Tomoo*; Saito, Eiji

Journal of Physics; Condensed Matter, 26(34), p.343202_1 - 343202_15, 2014/08

 Times Cited Count:106 Percentile:14.34(Physics, Condensed Matter)

Journal Articles

Spin-current-driven thermoelectric coating

Kirihara, Akihiro*; Uchida, Kenichi*; Kajiwara, Yosuke*; Ishida, Masahiko*; Nakamura, Yasunobu*; Manako, Takashi*; Saito, Eiji; Yorozu, Shinichi*

Nature Materials, 11(8), p.686 - 689, 2012/08

 Times Cited Count:153 Percentile:1.36(Chemistry, Physical)

5 (Records 1-5 displayed on this page)
  • 1