Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
都留 智仁; Han, S.*; 松浦 周太郎*; Chen, Z.*; 岸田 恭輔*; Lobzenko, I.; Rao, S.*; Woodward, C.*; George, E.*; 乾 晴行*
Nature Communications (Internet), 15, p.1706_1 - 1706_10, 2024/02
被引用回数:13 パーセンタイル:98.36(Multidisciplinary Sciences)耐火ハイエントロピー合金(RHEA)は、超高温用途への応用の可能性から注目されている。しかし、体心立方結晶をもつため面心立方HEAよりも脆く、さらに、主要なNi基超合金やFCC合金系の材料よりも著しく低いクリープ強度を示す。これらの欠点を克服し、RHEAを実用的な構造材料に発展させるためには、強度と延性を制御する要因の基礎的な理解を深める必要がある。本研究では、TiZrHfNbTaとVNbMoTaWという2つのモデルRHEAを調査し、前者は77Kまで塑性圧縮可能であるのに対し、後者は298K以下では圧縮不可能であることを示した。TiZrHfNbTaの六方最密充填(HCP)元素は、すべての構成元素がBCCであるVNbMoTaWと比較して、転位芯エネルギーを下げ、格子歪みを大きくし、せん断弾性率を下げることで、高い延性と相対的に高い降伏強度につながることがわかった。転位芯構造はVNbTaMoWではコンパクトで、TiZrHfNbTaでは拡張しており、2つのRHEAで異なる滑り面が活性化していることがわかった。これらは、いずれもHCP元素の濃度に起因していることが第一原理計算により明らかになった。この結果は、HCP元素とBCC元素の比率に関連した電子構造の変化を利用して、強度、延性、すべり挙動を制御し、より効率的な発電所や輸送のための次世代高温材料を開発できることを実証している。
都留 智仁; Lobzenko, I.; Han, S.*; Chen, Z.*; 岸田 恭輔*; 乾 晴行*
no journal, ,
ハイエントロピー合金(HEA)やゴムメタルなどの高濃度合金系において、強度と延性・靭性を両立した優れた力学機能が発見されており、高濃度の合金元素による優れた特性が注目を集めている。ただし、BCC構造を持つHEAでは、第56族元素から成るMoNbTaVW合金が延びずに界面で破壊するのに対して、第4
5族元素によるTiNbTaZrHf合金は巨大な延びを発現する。このように、合金系によって特性が全く異なるため、高濃度であることに加えて構成元素の役割が重要になる。本研究では、3元系のBCCミディアムエントロピー合金(MEA)モデルに対して、構成元素の力学特性に及ぼす効果を第一原理計算によって検討した。