Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fullerene nanowires as a versatile platform for organic electronics

Maeyoshi, Yuta*; Saeki, Akinori*; Suwa, Shotaro*; Omichi, Masaaki*; Marui, Hiromi*; Asano, Atsushi*; Tsukuda, Satoshi*; Sugimoto, Masaki; Kishimura, Akihiro*; Kataoka, Kazunori*; et al.

Scientific Reports (Internet), 2, p.600_1 - 600_6, 2012/08

 Times Cited Count:45 Percentile:72.82(Multidisciplinary Sciences)

The development of organic semiconducting nanowires that act as charge carrier transport pathways in flexible and lightweight nano-electronics is a major scientific challenge. We report on the fabrication of fullerene nanowires that is universally applicable to its derivatives (pristine C$$_{60}$$, methanofullerenes of C$$_{61}$$ and C$$_{71}$$, and indene C$$_{60}$$ bis-adduct). Nanowires with radii of 8$$sim$$11 nm were formed via a chain polymerization reaction induced by a high-energy ion beam. Fabrication of a poly(3-hexylthiophene): [6,6]-phenyl C$$_{61}$$ butyric acid methyl ester (PC$$_{61}$$BM) bulk heterojunction organic photovoltaic cell including PC$$_{61}$$BM nanowires with precisely-controlled length and density demonstrates how application of this methodology can improve the power conversion efficiency of these inverted cells.

1 (Records 1-1 displayed on this page)
  • 1