Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron production in deuteron-induced reactions on Li, Be, and C at an incident energy of 102 MeV

Araki, Shohei*; Watanabe, Yukinobu*; Kitajima, Mizuki*; Sadamatsu, Hiroki*; Nakano, Keita*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.

EPJ Web of Conferences, 146, p.11027_1 - 11027_4, 2017/09

 Times Cited Count:0 Percentile:0.08

In recently years, deuteron-induced reaction is considered to produce the neutron source for application fields such as radiation damage fusion materials and boron neutron capture therapy. However, as the experimental data are not sufficient at incident energies above 60 MeV, the theoretical models are not validated. Therefore, we measured the double differential cross sections (DDXs) for Li, Be and C at 100 MeV at the Research Center for Nuclear Physics in Osaka University. The DDXs were measured at 6 angles (0$$^{circ}$$$$sim$$25$$^{circ}$$ and neutron energy was determined by a time of flight method. Three different-size NE213 liquid organic scintillators located at a distance of 7 m, 24 m and 74 m respectively were adopted as neutron detectors. In the measured DDXs, a broad peak due to deuteron breakup process was observed at approximately half of the deuteron incident energy. The DDXs calculated by PHITS did not reproduce the experimental ones due to lack of theoretical model.

Journal Articles

Systematic measurement of double-differential neutron production cross sections for deuteron-induced reactions at an incident energy of 102 MeV

Araki, Shohei*; Watanabe, Yukinobu*; Kitajima, Mizuki*; Sadamatsu, Hiroki*; Nakano, Keita*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.

Nuclear Instruments and Methods in Physics Research A, 842, p.62 - 70, 2017/01

 Times Cited Count:8 Percentile:75.2(Instruments & Instrumentation)

Recently, deuteron incident reaction is expected to be used as a neutron source for study of radiation damage in fusion materials, boron neutron capture therapy, and so on. However, experimental data to validate the model is very few. In this work, double-differential neutron production cross sections (DDXs) for deuteron-induced reactions on $$^{nat}$$Li, $$^{9}$$Be, $$^{nat}$$C, $$^{27}$$Al, $$^{nat}$$Cu, and $$^{93}$$Nb at 102 MeV were measured at forward angles $$leq$$ 25$$^{circ}$$ by means of a time of flight (TOF) method with NE213 liquid organic scintillators at the Research Center of Nuclear Physics (RCNP), Osaka University. The experimental DDXs and energy-integrated cross sections were compared with TENDL-2015 data and PHITS calculation. The PHITS calculation showed better agreement with the experimental results than TENDL-2015 for all target nuclei, although the shape of the broad peak around 50 MeV was not satisfactorily reproduced by the PHITS calculation.

Journal Articles

Measurement of double differential (d,xn) cross sections for carbon at an incident energy of 100 MeV

Araki, Shohei*; Watanabe, Yukinobu*; Kitajima, Mizuki*; Sadamatsu, Hiroki*; Nakano, Keita*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.

JAEA-Conf 2016-004, p.159 - 164, 2016/09

Neutron production data from materials such as Li, Be and C bombarded by deuteron are required for design such as the facility of radiation damage for fusion materials and boron neutron capture therapy. However, there is little measurement of double differential neutron production cross sections (DDXs). Therefore, we have planned a series of DDXs measurements at incident energies more than 100 MeV in the Research Center for Nuclear Physics, Osaka University. The experiment was carried out with a carbon target at the neutron Time of Flight (TOF) course in RCNP. Emitted neutrons were detected by three different-size NE213 liquid organic scintillators (5.08 cm, 12.7 cm and 25.4 cm in dimeter and thickness) located at a distance of 7 m, 24 m and 74 m respectively. The neutron detection efficiencies of the detectors were calculated by SCINFUL-QMD code. It turned out that the calculation data fr carbon does not reproduce the experimental data satisfactorily well.

3 (Records 1-3 displayed on this page)
  • 1