Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 95

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute (FY2020)

Asakura, Kazuki; Shimomura, Yusuke; Donomae, Yasushi; Abe, Kazuyuki; Kitamura, Ryoichi; Miyakoshi, Hiroyuki; Takamatsu, Misao; Sakamoto, Naoki; Isozaki, Ryosuke; Onishi, Takashi; et al.

JAEA-Review 2021-020, 42 Pages, 2021/10

JAEA-Review-2021-020.pdf:2.95MB

The disposal of radioactive waste from the research facility need to calculate from the radioactivity concentration that based on variously nuclear fuels and materials. In Japan Atomic Energy Agency Oarai Research and Development Institute, the study on considering disposal is being advanced among the facilities which generate radioactive waste as well as the facilities which process radioactive waste. This report summarizes a study result in FY2020 about the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute.

Journal Articles

Bunch-size measurement of the high-intensity H$$^{-}$$ beam with 3 MeV by the bunch-shape monitor

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo

JPS Conference Proceedings (Internet), 33, p.011012_1 - 011012_6, 2021/03

The new bunch shape monitor (BSM) is required to measure the bunch size of the high-intensity H$$^{-}$$ beam with 3 MeV at the front-end section in the J-PARC linac. The carbon-nano tube wire and the graphene stick are good candidates for the target wire of the BSM, because these materials have the enough strength to detect the high-intensity beam. However, since the negative high voltage of more than a few kV should be applied to the wire in the BSM, the suppression of the discharge is the challenge to realize the new BSM. After the high-voltage test to investigate the effect of the discharge from the wire, the detection of the signal from the BSM was successful at the beam core with the peak current of 55 mA using the graphene stick. The preliminary result of the bunch-size measurement is reported in this presentation.

Journal Articles

Development of negative muonium ion source for muon acceleration

Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.

Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03

 Times Cited Count:1 Percentile:32.08(Physics, Nuclear)

A negative muonium ion (Mu$$^{-}$$) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu$$^{-}$$ ions was conducted to evaluate the performance of the Mu$$^{-}$$ ion source. The measured event rate of Mu$$^{-}$$ ions was $$(1.7 pm 0.3) times 10^{-3}$$ Mu$$^{-}$$/s when the event rate of the incident muon beam was $$1.3times10^{6}$$/s. The formation probability, defined as the ratio of the Mu$$^{-}$$ ions to the incident muons on the Al target, was $$(1.1 pm 0.2(textrm{stat.})^{-0.0}_{+0.1}(textrm{syst.})) times10^{-6}$$. This Mu$$^{-}$$ ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute (FY2019)

Asakura, Kazuki; Shimomura, Yusuke; Donomae, Yasushi; Abe, Kazuyuki; Kitamura, Ryoichi

JAEA-Review 2020-015, 66 Pages, 2020/09

JAEA-Review-2020-015.pdf:4.27MB

The disposal of radioactive waste from the research facility need to calculated from the radioactivity concentration that based on variously nuclear fuels and materials. In Japan Atomic Energy Oarai Research and Development Institute, the study on considering disposal is being advanced among the facilities which generate radioactive waste as well as the facilities which process radioactive waste. This report summarizes a study result in FY2019 about the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute.

Journal Articles

Evaluation of the bunch-shape monitor for the high-intensity proton beam

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.251 - 253, 2020/09

A bunch-shape monitor (BSM) in the low-energy region is being developed in the J-PARC linac to accelerate the high-intensity proton beam with the low emittance. A highly-oriented pyrolytic graphite (HOPG) was introduced as the target of the BSM to mitigate the thermal loading. The stable measurement of the BSM was realized thanks to the HOPG target, while the tungsten target was broken by the thermal loading from the high-intensity beam. However, since the longitudinal distribution measured with the BSM using the HOPG target was wider than the expected one, the improvement of tuning parameters is necessary for the BSM. The BSM consists of an electron multiplier, a bending magnet, and a radio-frequency deflector, which should be tuned appropriately. Behavior of these components were investigated and tuned. The longitudinal distribution measured with the BSM after the tuning was consistent with the expected one.

Journal Articles

Upgrade of the 3-MeV linac for testing of accelerator components at J-PARC

Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.

Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12

 Times Cited Count:1 Percentile:53.97

We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Development of inter-digital H-mode drift-tube linac prototype with alternative phase focusing for a muon linac in the J-PARC muon g-2/EDM experiment

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo; et al.

Journal of Physics; Conference Series, 1350, p.012054_1 - 012054_7, 2019/12

 Times Cited Count:4 Percentile:92.52

An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.

Journal Articles

Negative muonium ion production with a C12A7 electride film

Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.

Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12

 Times Cited Count:1 Percentile:53.97

Negative muonium atom ($$mu^+$$e$$^-$$e$$^-$$, Mu$$^-$$) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu$$^-$$ were 10$$^{-3}$$/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu$$^-$$ averaged energy: it was 0.2$$pm$$0.1keV.

Journal Articles

Disk and washer coupled cavity linac design and cold-model for muon linac

Otani, Masashi*; Futatsukawa, Kenta*; Mibe, Tsutomu*; Naito, Fujio*; Hasegawa, Kazuo; Ito, Takashi; Kitamura, Ryo; Kondo, Yasuhiro; Morishita, Takatoshi; Iinuma, Hiromi*; et al.

Journal of Physics; Conference Series, 1350, p.012097_1 - 012097_7, 2019/12

 Times Cited Count:2 Percentile:76.59

A disk and washer (DAW) coupled cavity linac (CCL) has been developed for a middle velocity part in a muon linac to measure muon anomalous magnetic moment and search for electric dipole moment. I will accelerate muons from $$v/c$$ = $$beta$$ = 0.3 to 0.7 at an operational frequency of 1.3GHz. In this poster, the cavity design, beam dynamics design, and the cold-model measurements will be presented.

Journal Articles

Beam commissioning of muon beamline using negative hydrogen ions generated by ultraviolet light

Nakazawa, Yuga*; Bae, S.*; Choi, H.*; Choi, S.*; Iijima, Toru*; Iinuma, Hiromi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kim, B.*; Ko, H. S.*; et al.

Nuclear Instruments and Methods in Physics Research A, 937, p.164 - 167, 2019/09

 Times Cited Count:2 Percentile:27.72(Instruments & Instrumentation)

A muon linac is under development for the precise measurement of the muon anomalous magnetic moment ($$g$$-2) and electric dipole moment (EDM) with a reaccelerated thermal muon beam. An H$$^-$$ source driven by an ultraviolet light has been developed for the muon acceleration experiment. Prior to the acceleration experiment, a beamline commissioning was performed using this H$$^-$$ beam, since the accelerated muon intensity is very low. We successfully measured the magnetic rigidity, which is essential for identifying the accelerated muons. This H$$^-$$ source is capable of utilizing as a general-purpose beam source for other beamline.

Journal Articles

Bunch shape monitor for the high-intensity H$$^{-}$$ beam with 3 MeV using the carbon material

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Moriya, Katsuhiro; Nemoto, Yasuo*; Oguri, Hidetomo

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.51 - 54, 2019/07

The longitudinal measurement and tuning at the beam transport after the RFQ are important to reduce the beam loss and the emittance growth in the J-PARC linac, when the high-intensity H$$^{-}$$ beam of more than 60 mA is supplied. The new bunch shape monitor (BSM) using the carbon-nanotube (CNT) wire is necessary to measure the bunch shape of the high-intensity H$$^{-}$$ beam with 3 MeV, because the CNT wire has a high-temperature tolerance and a small energy deposit. However, when the high voltage was applied to the CNT wire to extract the secondary electron derived, the discharge prevents the power supply from applying the voltage. Therefore, the discharge should be suppressed to measure the bunch shape with stability. Considering the characteristics of the CNT as the emitter, when the length of the CNT wire was short, the high voltage of -10 kV was applied to the CNT wire. The current status and future prospects of the BSM using the CNT wire are reported in this presentation.

Journal Articles

Development of the bunch shape monitor using the carbon-nano tube wire

Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Moriya, Katsuhiro; Oguri, Hidetomo; Futatsukawa, Kenta*; Miyao, Tomoaki*; Otani, Masashi*; Kosaka, Satoshi*; et al.

Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2543 - 2546, 2019/06

A bunch shape monitor (BSM) is one of the important instruments to measure the longitudinal phase space distribution. For example in the J-PARC linac, three BSMs using the tungsten wire are installed at the ACS section to measure the bunch shapes between the accelerating cavities. However, this conventional BSM is hard to measure the bunch shape of H$$^{-}$$ beam with 3 MeV at the beam transport between the RFQ and DTL sections, because the wire is broken around the center region of the beam. The new BSM using the carbon-nano-tube (CNT) wire is being developed to be able to measure the bunch shape of the H$$^{-}$$ beam with 3 MeV. The careful attention should be paid to apply the high voltage of $$-$$10 kV to the CNT wire. The several measures are taken to suppress the discharge from the wire and operate the CNT-BSM. This presentation reports the current status of the development and future prospective for the CNT-BSM.

Journal Articles

Prototype of an Inter-digital H-mode Drift-Tube Linac for muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; et al.

Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.180 - 183, 2019/01

We have developed an Interdigital H-mode (IH) Drift-Tube Linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

Journal Articles

Development of a microchannel plate based beam profile monitor for a re-accelerated muon beam

Kim, B.*; Bae, S.*; Choi, H.*; Choi, S.*; Kawamura, Naritoshi*; Kitamura, Ryo*; Ko, H. S.*; Kondo, Yasuhiro; Mibe, Tsutomu*; Otani, Masashi*; et al.

Nuclear Instruments and Methods in Physics Research A, 899, p.22 - 27, 2018/08

 Times Cited Count:6 Percentile:59.55(Instruments & Instrumentation)

A beam profile monitor (BPM) based on a microchannel plate has been developed for muon beams with low transverse momentum for the measurement of the muon anomalous magnetic moment and electric dipole moment at high precision, with capability of diagnosing muon beams of kinetic energy range from a few keV to 4 MeV. The performance of the BPM has been evaluated using a surface muon beam at J-PARC and additionally with an ultraviolet (UV) light source. It has been confirmed that the BPM has a dynamic range from a few to 10$$^4$$ muons per bunch without saturation. The spatial resolution of the BPM has been estimated to be less than 0.30 mm. The positron background from muon decays is an obstacle in muon beam profile monitoring and a partial discrimination of the positrons has been achieved under discrete particle conditions.

Journal Articles

First muon acceleration using a radio-frequency accelerator

Bae, S.*; Choi, H.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; et al.

Physical Review Accelerators and Beams (Internet), 21(5), p.050101_1 - 050101_6, 2018/05

 Times Cited Count:15 Percentile:82.65(Physics, Nuclear)

Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu$$^{-}$$), which are bound states of positive muons and two electrons, are generated from through the electron capture process in an aluminum degrader. The generated Mu$$^{-}$$'s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu$$^{-}$$'s are accelerated to 89 keV. The accelerated Mu$$^{-}$$'s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

Journal Articles

High-beta section of a muon linac for the measurement of the muon g-2/EDM at J-PARC

Kondo, Yasuhiro; Hasegawa, Kazuo; Otani, Masashi*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; Kitamura, Ryo*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.398 - 400, 2017/12

A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H-line) at the J-PARC MLF are once stopped in an silica aerojel target and room temperature muoniums are evaporated from the aerogel. They are dissociated with laser (ultra slow muons), then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure is described.

Journal Articles

DTL design for muon linac

Otani, Masashi*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Kondo, Yasuhiro; Kitamura, Ryo*; Kurennoy, S.*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.364 - 366, 2017/12

We have developed a drift-tube linac (DTL) design for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The DTL accelerates muons from $$beta$$ = $$v/c$$ = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

Journal Articles

Current preparation and prospects of the muon acceleration test with RFQ in J-PARC

Kitamura, Ryo*; Otani, Masashi*; Kondo, Yasuhiro; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iinuma, Hiromi*; Ishida, Katsuhiko*; et al.

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.100 - 103, 2017/12

Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world's first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.

Journal Articles

Beam dynamics design of the muon linac high-beta section

Kondo, Yasuhiro; Hasegawa, Kazuo; Otani, Masashi*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; Kitamura, Ryo*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2304 - 2307, 2017/06

A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H-line) at the J-PARC MLF are once stopped in an silica aerojel target and room temperature muoniums are evaporated from the aerogel. They are dissociated with laser (ultra slow muons), then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure is described.

Journal Articles

Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

Otani, Masashi*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Kondo, Yasuhiro; Kitamura, Ryo*; Kurennoy, S.*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2868 - 2870, 2017/06

We have developed a Crossbar H-Mode (CH) drift-tube linac (DTL)design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from $$beta$$ = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

95 (Records 1-20 displayed on this page)