Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 219

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Spatial variation in soil respiration rate is controlled by the content of particulate organic materials in the volcanic ash soil under a ${it Cryptomeria japonica}$ plantation

Abe, Yukiko*; Liang, N.*; Teramoto, Munemasa*; Koarashi, Jun; Atarashi-Andoh, Mariko; Hashimoto, Shoji*; Tange, Takeshi*

Geoderma Regional (Internet), 29, p.e00529_1 - e00529_11, 2022/06

This study aimed to clarify the causes of spatial variation in soil respiration rate on volcanic ash soil. From January 2013 to August 2019, soil respiration rates were measured at 40 measuring points periodically at a 35-year-old ${it Cryptomeria japonica}$ plantation in Tokyo, Japan. In August 2019, the carbon content of the litter layer, total carbon content of soil organic matter (SOM), carbon content of the low-density fraction (LF-C) of SOM, fine root biomass, and bulk density of soil were measured at all measuring points. Results of the multiple regression analysis showed that the model with only the LF-C as an explanatory variable had the highest capability for predicting the respiration rate at a soil temperature of 20$$^{circ}$$C, indicating that LF-C, which is considered to be readily available to soil microorganisms, can be the main factor responsible for the spatial variation in soil respiration rate.

Journal Articles

Contamination processes of tree components in Japanese forest ecosystems affected by the Fukushima Daiichi Nuclear Power Plant accident $$^{137}$$Cs fallout

Ota, Masakazu; Koarashi, Jun

Science of the Total Environment, 816, p.151587_1 - 151587_21, 2022/04

In forests affected by the Fukushima Daiichi Nuclear Power Plant accident, trees became contaminated with $$^{137}$$Cs. However, $$^{137}$$Cs transfer processes determining tree contamination (particularly for stem wood, which is a prominent commercial resource in Fukushima) remain insufficiently understood. This study proposes a model for simulating the dynamic behavior of $$^{137}$$Cs in a forest tree-litter-soil system and applied it to two contaminated forests (cedar plantation and natural oak stand) in Fukushima. The model-calculated results and inter-comparison of the results with measurements elucidated the relative impact of distinct $$^{137}$$Cs transfer processes determining tree contamination. The transfer of $$^{137}$$Cs to trees occurred mostly ($$>$$ 99%) through surface uptake of $$^{137}$$Cs directly trapped by leaves or needles and bark during the fallout. By contrast, root uptake of $$^{137}$$Cs from the soil was unsubstantial and several orders of magnitude lower than the surface uptake over a 50-year period following the accident. As a result, the internal contamination of the trees proceeded through an enduring recycling (translocation) of $$^{137}$$Cs absorbed on the tree surface at the time of the accident. A significant surface uptake of $$^{137}$$Cs at the bark was identified, contributing 100% (leafless oak tree) and 30% (foliated cedar tree; the remaining surface uptake occurred at the needles) of the total $$^{137}$$Cs uptake by trees. It was suggested that the trees growing at the study sites are currently (as of 2021) in a decontamination phase; the activity concentration of $$^{137}$$Cs in the stem wood decreases by 3% per year, mainly through radioactive decay of $$^{137}$$Cs and partly through a dilution effect from tree growth.

Journal Articles

Spatial variations in radiocesium deposition and litter-soil distribution in a mountainous forest catchment affected by the Fukushima nuclear accident

Atarashi-Andoh, Mariko; Koarashi, Jun; Tsuzuki, Katsunori; Takeuchi, Erina; Nishimura, Shusaku; Muto, Kotomi*; Matsunaga, Takeshi*

Journal of Environmental Radioactivity, 238-239, p.106725_1 - 106725_8, 2021/11

To understand the spatial variation in soil $$^{137}$$Cs inventory in complex mountainous topography, a whole-area investigation of $$^{137}$$Cs deposition in a broad-leaved forest catchment of a mountain stream was conducted using grid sampling. Across the catchment, organic and surface mineral soil layers were collected at 42 locations in 2013 and 6 locations in 2015. $$^{137}$$Cs deposition on the forest floor exhibited high spatial heterogeneity and altitude-dependent distribution over the catchment. The $$^{137}$$Cs retention ratio in the organic layer ranged from 6% to 82% in 2013. The $$^{137}$$Cs retention ratios had positive correlations with the material inventory in the organic layer and the elevation. The $$^{137}$$Cs retention ratios in the organic layer were less than 20% in 2015, even at the locations where the retention ratio was higher than 55% in 2013. Although there was spatial variation in the migration speed, $$^{137}$$Cs migration from the organic layer to mineral soil was almost completed within 4 y of the deposition.

Journal Articles

Dynamics of radiocaesium within forests in Fukushima; Results and analysis of a model inter-comparison

Hashimoto, Shoji*; Tanaka, Taku*; Komatsu, Masabumi*; Gonze, M.-A.*; Sakashita, Wataru*; Kurikami, Hiroshi; Nishina, Kazuya*; Ota, Masakazu; Ohashi, Shinta*; Calmon, P.*; et al.

Journal of Environmental Radioactivity, 238-239, p.106721_1 - 106721_10, 2021/11

 Times Cited Count:0 Percentile:0(Environmental Sciences)

This study was aimed at analysing performance of models for radiocesium migration mainly in evergreen coniferous forest in Fukushima, by inter-comparison between models of several research teams. The exercise included two scenarios of countermeasures against the contamination, namely removal of soil surface litter and forest renewal, and a specific konara oak forest scenario in addition to the evergreen forest scenario. All the models reproduced trend of time evolution of radiocesium inventories and concentrations in each of the components in forest such as leaf and organic soil layer. However, the variations between models enlarged in long-term predictions over 50 years after the fallout, meaning continuous field monitoring and model verification/validation is necessary.

Journal Articles

Soil microbial community responding to moderately elevated nitrogen deposition in a Japanese cool temperate forest surrounded by fertilized grasslands

Nagano, Hirohiko; Nakayama, Masataka*; Katata, Genki*; Fukushima, Keitaro*; Yamaguchi, Takashi*; Watanabe, Makoto*; Kondo, Toshiaki*; Atarashi-Andoh, Mariko; Kubota, Tomohiro*; Tateno, Ryunosuke*; et al.

Soil Science and Plant Nutrition, 67(5), p.606 - 616, 2021/10

 Times Cited Count:0 Percentile:0.02(Plant Sciences)

We analyzed the relationships between nitrogen deposition (deposition of nitrate and ammonium ions) and soil microbial properties in a cool temperate forest surrounded by normally fertilized pasture grasslands in northern Japan. The aim of the present study was to gain the primary information on soil microbial response to moderately elevated nitrogen deposition ($$<$$ 10 kg N ha$$^{-1}$$ y$$^{-1}$$). We established three experimental plots in the forest edge adjacent to grasslands and other three plots in the forest interior at least 700 m away from the grasslands. During May to November 2018, nitrogen deposition in each plot was measured. In August 2018, litter and soil (0-5 cm depth) samples were collected from all plots to measure net nitrogen mineralization and nitrification rates as indicators of microbial activity, and microbial biomass carbon and nitrogen and various gene abundances (i.e. bacterial 16S rRNA, fungal ITS, bacterial amoA, and archaeal amoA genes) as indicators of microbial abundance and structure. Nitrogen deposition in the forest edge was 1.4-fold greater than that in the forest interior, even while the maximum deposition was 3.7 kg N ha$$^{-1}$$. Nitrogen deposition was significantly correlated to the net nitrogen mineralization and nitrification rates and the 16S rRNA and bacterial amoA gene abundances. Microbial community structures were different between litter and soil samples but were similar between the forest edge and interior. Significant correlations of nitrogen deposition to the soil carbon to nitrogen ratio, and the nitrate and ammonium contents were also observed. Thus, our results show that moderately elevated nitrogen deposition in nitrogen-limited forest edges can stimulate microbial activities and abundances in soils.

Journal Articles

Transfer of $$^{137}$$Cs to web-building spiders, ${it Nephila clavata}$, and its pathways; A Preliminary study using stable carbon and nitrogen isotope analyses

Tanaka, Sota; Kakinuma, Hotaru*; Adachi, Taro*; Atarashi-Andoh, Mariko; Koarashi, Jun

Journal of Nuclear Science and Technology, 58(4), p.507 - 514, 2021/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Understanding the pathways of $$^{137}$$Cs transfer to predatory spiders is useful to assess long-term behavior of $$^{137}$$Cs in the environment, because spiders obtain food resources from both the grazing and detritus food chains in terrestrial-aquatic linking forest ecosystems. In the present study, we collected spider samples at forest interior and riverside. The sample collection was approximately 6.5 years after the FDNPP accident. Moreover, a transfer factor value (T$$_{ag}$$) for $$^{137}$$Cs in spiders was quantified. Stable carbon and nitrogen isotope ratios ($$delta$$$$^{13}$$C and $$delta$$$$^{15}$$N) of the spiders were also investigated to estimate the transfer pathways of $$^{137}$$Cs to the spiders.

JAEA Reports

Practical guide on soil sampling, treatment, and carbon isotope analysis for carbon cycle studies

Koarashi, Jun; Atarashi-Andoh, Mariko; Nagano, Hirohiko*; Sugiharto, U.*; Saengkorakot, C.*; Suzuki, Takashi; Kokubu, Yoko; Fujita, Natsuko; Kinoshita, Naoki; Nagai, Haruyasu; et al.

JAEA-Technology 2020-012, 53 Pages, 2020/10


There is growing concern that recent rapid changes in climate and environment could have a significant influence on carbon cycling in terrestrial ecosystems (especially forest ecosystems) and could consequently lead to a positive feedback for global warming. The magnitude and timing of this feedback remain highly uncertain largely due to a lack of quantitative understanding of the dynamics of organic carbon stored in soils and its responses to changes in climate and environment. The tracing of radiocarbon (natural and bomb-derived $$^{14}$$C) and stable carbon ($$^{13}$$C) isotopes through terrestrial ecosystems can be a powerful tool for studying soil organic carbon (SOC) dynamics. The primary aim of this guide is to promote the use of isotope-based approaches to improve our understanding of the carbon cycling in soils, particularly in the Asian region. The guide covers practical methods of soil sampling; treatment and fractionation of soil samples; preparation of soil samples for $$^{13}$$C (and stable nitrogen isotope, $$^{15}$$N) and $$^{14}$$C analyses; and $$^{13}$$C, $$^{15}$$N, and $$^{14}$$C measurements by the use of isotope ratio mass spectrometry and accelerator mass spectrometry (AMS). The guide briefly introduces ways to report $$^{14}$$C data, which are frequently used for soil carbon cycling studies. The guide also reports results of a case study conducted in a Japanese forest ecosystem, as a practical application of the use of isotope-based approaches. This guide is mainly intended for researchers who are interested but are not experienced in this research field. The guide will hopefully encourage readers to participate in soil carbon cycling studies, including field works, laboratory experiments, isotope analyses, and discussions with great interest.

Journal Articles

Formation and mobility of soil organic carbon in a buried humic horizon of a volcanic ash soil

Wijesinghe, J. N.*; Koarashi, Jun; Atarashi-Andoh, Mariko; Kokubu, Yoko; Yamaguchi, Noriko*; Sase, Takashi*; Hosono, Mamoru*; Inoue, Yuzuru*; Mori, Yuki*; Hiradate, Shuntaro*

Geoderma, 374, p.114417_1 - 114417_10, 2020/09

 Times Cited Count:2 Percentile:44.21(Soil Science)

Journal Articles

Effectiveness of decontamination by litter removal in Japanese forest ecosystems affected by the Fukushima nuclear accident

Koarashi, Jun; Atarashi-Andoh, Mariko; Nishimura, Shusaku; Muto, Kotomi*

Scientific Reports (Internet), 10(1), p.6614_1 - 6614_11, 2020/04

 Times Cited Count:5 Percentile:62.5(Multidisciplinary Sciences)

We conducted a pilot-scale decontamination study in a deciduous broadleaved forest in Fukushima. The entire forest, other than two untreated areas, was decontaminated by removing the litter layer approximately 3.3 years after the accident. For three years after decontamination, we quantified $$^{137}$$Cs contamination levels in the litter and topsoil layers and in the tree leaves, in the untreated and decontaminated areas. The decreased inventories of litter-associated $$^{137}$$Cs in the decontaminated areas were observed only in the first year after decontamination. Generally, no decontamination effects were observed on the $$^{137}$$Cs transfer in tree leaves. The primary reason for this was the rapid shift in the main reservoir of $$^{137}$$Cs from litter layers to the underlying mineral soil, which differs from the observations in post-Chernobyl studies of European forest ecosystems. The results suggest that litter-removal decontamination can only be successful if it is implemented more quickly for Japanese forest ecosystems.

Journal Articles

Characterizing vertical migration of $$^{137}$$Cs in organic layer and mineral soil in Japanese forests; Four-year observation and model analysis

Muto, Kotomi; Atarashi-Andoh, Mariko; Matsunaga, Takeshi*; Koarashi, Jun

Journal of Environmental Radioactivity, 208-209, p.106040_1 - 106040_10, 2019/11

 Times Cited Count:7 Percentile:57.6(Environmental Sciences)

Vertical distributions of $$^{137}$$Cs in the soil profile were observed at five forest sites with different vegetation types for 4.4 years after the Fukushima Dai-ichi Nuclear Power Plant accident, and $$^{137}$$Cs migration in the organic layer and mineral soil was analyzed based on a comparison of models and observations. Cesium-137 migration from the organic layer was faster than that observed in European forests, suggesting that the mobility and bioavailability of $$^{137}$$Cs could be suppressed rapidly in Japanese forests. The diffusion coefficients of $$^{137}$$Cs in the mineral soil were estimated to be 0.042-0.55 cm$$^2$$y$$^{-1}$$, which were roughly comparable with those of European forest soils affected by the Chernobyl Nuclear Power Plant accident. Model predictions indicated $$^{137}$$Cs mainly distributed in the surface mineral soil at 10 years after the accident. It suggest that the $$^{137}$$Cs deposited onto Japanese forest ecosystems will be retained in the surface layers of mineral soil for a long time.

Journal Articles

Effect of dry-wet cycles on carbon dioxide release from two different volcanic ash soils in a Japanese temperate forest

Nagano, Hirohiko; Atarashi-Andoh, Mariko; Koarashi, Jun

Soil Science and Plant Nutrition, 65(5), p.525 - 533, 2019/10

 Times Cited Count:1 Percentile:14.18(Plant Sciences)

In the present study, two volcanic ash soils (soil A and B) from a temperate broad-leaved forest in eastern Japan were incubated under repeated dry-wet cycles and continuously constant moisture conditions. The primary aims were to quantify the potential for enhancement of carbon dioxide (CO$$_{2}$$) release owing to increased water fluctuation and to examine differences in the responses of volcanic ash soils with different physicochemical properties. Soil B, rather than soil A, was a typical Andosol. During incubation at 20 $$^{circ}$$C for 120 days with five dry-wet cycles, the CO$$_{2}$$ release rate was measured periodically. Abundance of the stable carbon isotope in CO$$_{2}$$ ($$delta^{13}$$C-CO$$_{2}$$) was measured to capture changes in the origin of decomposed soil organic matter (SOM) owing to the dry-wet cycles. The CO$$_{2}$$ release rate under the dry-wet cycles was up to 49% higher than the values predicted from a parabolic relationship between CO$$_{2}$$ release and water content during incubation under the continuously constant moisture condition. The magnitude of CO$$_{2}$$ release enhancement was 2.7-fold higher in soil B relative to that in soil A. The $$delta^{13}$$C-CO$$_{2}$$ value in the dry-wet cycles was enriched by 0.3-2.3%$$_{0}$$ compared to that during incubation under the continuously constant moisture conditions, suggesting that the decomposition of old and/or well-metabolized SOM was enhanced by the dry-wet cycles. Thus, the present study suggests that Andosols, which have been believed to have a strong SOM stabilization ability, are vulnerable to dry-wet cycles. Then, increased water fluctuation in a future warmer world would have significant potential to stimulate CO$$_{2}$$ release from soils.

Journal Articles

A New perspective on the $$^{137}$$Cs retention mechanism in surface soils during the early stage after the Fukushima nuclear accident

Koarashi, Jun; Nishimura, Shusaku; Atarashi-Andoh, Mariko; Muto, Kotomi; Matsunaga, Takeshi*

Scientific Reports (Internet), 9, p.7034_1 - 7034_10, 2019/05

 Times Cited Count:19 Percentile:84.46(Multidisciplinary Sciences)

The aim of the present study is to explore the retention mechanisms of $$^{137}$$Cs in the surface soil layers of terrestrial ecosystems affected by the Fukushima NPP accident, with a specific focus on the interactions between $$^{137}$$Cs, soil minerals, and organic matter. Soil samples were collected from field, orchard, and forest sites in July 2011, separated into three soil fractions with different mineral-organic interaction characteristics. The results show that 20-71% of the $$^{137}$$Cs was retained in association with relatively mineral-free, particulate organic matter-dominant fractions in the orchard and forest surface soil layers. Given the physicochemical and mineralogical properties and the $$^{137}$$Cs extractability of the soils, $$^{137}$$Cs incorporation into the complex structure of particulate organic matter is likely the main mechanism for $$^{137}$$Cs retention in the surface soil layers.

Journal Articles

Low $$^{137}$$Cs retention capability of organic layers in Japanese forest ecosystems affected by the Fukushima nuclear accident

Koarashi, Jun; Atarashi-Andoh, Mariko

Journal of Radioanalytical and Nuclear Chemistry, 320(1), p.179 - 191, 2019/04

 Times Cited Count:11 Percentile:94.17(Chemistry, Analytical)

To quantify the $$^{137}$$Cs retention behavior in forest-floor organic layers in relation to the litter dynamics, litter samples were collected at five forest sites in Fukushima in 2011 and 2015, and separated into eight fractions with different precursor species and degrees of degradation; afterward, $$^{137}$$Cs inventory was determined in each litter fraction. The ecological half-lives of $$^{137}$$Cs in the litter fractions were estimated to be from 0.7 to 4.4 years and found to depend not on the sampling site but rather on the precursor species of the litter materials. Broadleaf- and pine-needle-originated litter fractions exhibited shorter ecological half-lives of $$^{137}$$Cs, while those of cedar-originated and finely fragmented litter fractions were longer. The results suggested that the organic layers in Japanese forest ecosystems have a low $$^{137}$$Cs retention capability, although it differs depending on the forest type.

Journal Articles

Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident

Koarashi, Jun; Nishimura, Shusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi*; Sato, Tsutomu*; Nagao, Seiya*

Chemosphere, 205, p.147 - 155, 2018/08

 Times Cited Count:14 Percentile:65.6(Environmental Sciences)

There is little understanding of how soil aggregation can affect the mobility and bioavailability of $$^{137}$$Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions. The fractions were then analyzed for $$^{137}$$Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and $$^{137}$$Cs was largely associated with large-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and most of $$^{137}$$Cs was in the clay- and silt-sized fractions. Across all sites, the $$^{137}$$Cs extractability was higher in the large-sized aggregate fractions than in the clay-sized fractions. The results demonstrate that large-sized aggregates are a significant reservoir of potentially mobile and bioavailable $$^{137}$$Cs in organic-rich (forest and orchard) soils.

Journal Articles

Fluctuation tendency of radioactive cesium in surface soil

Fujita, Hiroki; Maehara, Yushi; Nagaoka, Mika; Koarashi, Jun

KEK Proceedings 2017-6, p.35 - 39, 2017/11

no abstracts in English

Journal Articles

Sources of $$^{137}$$Cs fluvial export from a forest catchment evaluated by stable carbon and nitrogen isotopic characterization of organic matter

Muto, Kotomi; Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Nishimura, Shusaku; Tsuzuki, Katsunori; Matsunaga, Takeshi*

Journal of Radioanalytical and Nuclear Chemistry, 314(1), p.403 - 411, 2017/10

 Times Cited Count:12 Percentile:86.92(Chemistry, Analytical)

Fluvial export of particulate and dissolved $$^{137}$$Cs was investigated to reveal its sources and transfer mechanisms in a broadleaved forest catchment using a continuous collection system. The finest size fraction ($$<$$ 75$$mu$$m), consisting of decomposed litter and surface mineral soil, was the dominant fraction in the particulate $$^{137}$$Cs load, although the contribution of coarser size fractions increased during high water discharge in 2014. The dissolved $$^{137}$$Cs originated from the decomposition of $$^{137}$$Cs-contaminated litter. Temporal changes in $$^{137}$$Cs distribution in the litter-mineral soil system indicated that the dissolved $$^{137}$$Cs load will be moderated in several years, while particulate $$^{137}$$Cs load has the potential to continue for a long time.

Journal Articles

Vertical distributions of global fallout $$^{137}$$Cs and $$^{14}$$C in a Japanese forest soil profile and their implications for the fate and migration processes of Fukushima-derived $$^{137}$$Cs

Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru*; Matsunaga, Takeshi

Journal of Radioanalytical and Nuclear Chemistry, 311(1), p.473 - 481, 2017/01

 Times Cited Count:14 Percentile:88.74(Chemistry, Analytical)

Vertical distributions of global fallout $$^{137}$$Cs and $$^{14}$$C were investigated in a Japanese forest soil in 2001. Even 38 years after the fallout, $$^{137}$$Cs was still observed mostly in the uppermost 5 cm. A preferential accumulation of $$^{137}$$Cs was found in a 1-cm-thick transition layer between organic-rich A and underlying B horizons. This unique observation indicated that $$^{137}$$Cs migrated through the A horizon at a rate of 0.20% y$$^{-1}$$ and the transition layer acted as a barrier for $$^{137}$$Cs migration to deeper layers. The vertical distributions of $$^{137}$$Cs and $$^{14}$$C were significantly correlated, suggesting a coupled downward migration of $$^{137}$$Cs and organic matter on a time scale of decades, along the same physical pathways.

Journal Articles

Post-deposition early-phase migration and retention behavior of radiocesium in a litter-mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident

Koarashi, Jun; Nishimura, Shusaku; Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Takeuchi, Erina; Muto, Kotomi

Chemosphere, 165, p.335 - 341, 2016/12

 Times Cited Count:25 Percentile:75.78(Environmental Sciences)

We established field lysimeters in a Japanese deciduous broad-leaved forest soon after the Fukushima nuclear accident to continuously monitor the downward transfer of $$^{137}$$Cs at three depths: the litter-mineral soil boundary and depths of 5 cm and 10 cm in the mineral soil. Observations were conducted at two sites within the forest from May 2011 to May 2015. Results revealed similar temporal and depth-wise variations in $$^{137}$$Cs downward fluxes for both sites. The $$^{137}$$Cs downward fluxes generally decreased year by year at all depths, indicating that $$^{137}$$Cs was rapidly leached from the forest-floor litter layer and was then immobilized in the upper (0-5 cm) mineral soil layer through its interaction with clay minerals. The decreased inventory of mobile (or bioavailable) $$^{137}$$Cs observed during early stages after deposition indicates that the litter-soil system in the Japanese deciduous forest provides only a temporary source for $$^{137}$$Cs recycling in plants.

Journal Articles

Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

Scientific Reports (Internet), 6, p.38591_1 - 38591_11, 2016/12

 Times Cited Count:35 Percentile:83.58(Multidisciplinary Sciences)

Forest-floor organic layers play a key role in controlling the overall bioavailability of $$^{137}$$Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of $$^{137}$$Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of $$^{137}$$Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited $$^{137}$$Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited $$^{137}$$Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of $$^{137}$$Cs associated with litter materials with different degrees of degradation in the organic layers.

Journal Articles

Year-round variations in the fluvial transport load of particulate $$^{137}$$Cs in a forested catchment affected by the Fukushima Daiichi Nuclear Power Plant accident

Matsunaga, Takeshi; Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Takeuchi, Erina; Muto, Kotomi; Tsuzuki, Katsunori; Nishimura, Shusaku; Koarashi, Jun; Otosaka, Shigeyoshi; Sato, Tsutomu*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 310(2), p.679 - 693, 2016/11


 Times Cited Count:5 Percentile:54.39(Chemistry, Analytical)

Particulate $$^{137}$$Cs in stream water was collected continuously for two years in order to assess the long-term trend of the $$^{137}$$Cs discharge from the forest environment. Sampling was conducted from December 2011 to December 2013 in a mountainous stream, which received the $$^{137}$$Cs from the Fukushima Daiichi Nuclear Power Plant accident. A seasonal increase in fluvial transport load of particulate $$^{137}$$Cs associated with suspended solids (SS) was observed in August and September when rainfall was abundant. The particulate $$^{137}$$Cs concentration decreased at a faster rate than the rate due to radioactive decay. This decrease might be resulted from redistribution of the easily eroded and polluted soil surface due to heavy rain events such as typhoons. These findings indicate that the particulate $$^{137}$$Cs load was subject to the inter-annual variations in rainfalls, and decreased gradually over a long period of time due to a decrease in $$^{137}$$Cs concentration in SS.

219 (Records 1-20 displayed on this page)