Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wu, P.*; Murai, Naoki; Li, T.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Nakajima, Kenji; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.
New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01
Times Cited Count:0 Percentile:0.02(Physics, Multidisciplinary)Soda, Minoru*; Kofu, Maiko; Kawamura, Seiko; Asai, Shinichiro*; Masuda, Takatsugu*; Yoshizawa, Hideki*; Furukawa, Hazuki*
Journal of the Physical Society of Japan, 91(9), p.094707_1 - 094707_5, 2022/09
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Tatsumi, Kazuyoshi; Inamura, Yasuhiro; Kofu, Maiko; Kiyanagi, Ryoji; Shimazaki, Hideaki*
Journal of Applied Crystallography, 55(3), p.533 - 543, 2022/06
Times Cited Count:0 Percentile:0.01(Chemistry, Multidisciplinary)A data-driven bin-width optimization for the histograms of measured data sets based on inhomogeneous Poisson processes was developed in a neurophysiology study [Shimazaki & Shinomoto (2007). Neural Comput. 19, 1503-1527], and a successive study [Muto et al. (2019). J. Phys. Soc. Jpn, 88, 044002] proposed its application to inelastic neutron scattering (INS) data. In the present study, the results of the method on experimental INS time-of-flight data collected under different measurement conditions from a copper single crystal are validated. The extrapolation of the statistics on a given data set to other data sets with different total counts precisely infers the optimal bin widths on the latter. The histograms with the optimized bin widths statistically verify two fine-spectral feature examples in the energy and momentum transfer cross sections: (i) the existence of the phonon band gaps; and (ii) the number of plural phonon branches located close to each other. This indicates that the applied method helps in the efficient and rigorous observation of spectral structures important in physics and materials science like novel forms of magnetic excitation and phonon states correlated to lattice thermal conductivities.
Luo, P.*; Zhai, Y.*; Falus, P.*; Garca Sakai, V.*; Hartl, M.*; Kofu, Maiko; Nakajima, Kenji; Faraone, A.*; Z, Y.*
Nature Communications (Internet), 13, p.2092_1 - 2092_9, 2022/04
Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)Rathore, E.*; Juneja, R.*; Sarkar, D.*; Roychowdhury, S.*; Kofu, Maiko; Nakajima, Kenji; Singh, A. K.*; Biswas, K.*
Materials Today Energy (Internet), 24, p.100953_1 - 100953_9, 2022/03
Times Cited Count:9 Percentile:93.54(Chemistry, Physical)Okuma, Ryutaro*; Kofu, Maiko; Asai, Shinichiro*; Avdeev, M.*; Koda, Akihiro*; Okabe, Hirotaka*; Hiraishi, Masatoshi*; Takeshita, Soshi*; Kojima, Kenji*; Kadono, Ryosuke*; et al.
Nature Communications (Internet), 12, p.4382_1 - 4382_7, 2021/07
Times Cited Count:5 Percentile:67.76(Multidisciplinary Sciences)Kofu, Maiko; Watanuki, Ryuta*; Sakakibara, Toshiro*; Kawamura, Seiko; Nakajima, Kenji; Matsuura, Masato*; Ueki, Takeshi*; Akutsu, Kazuhiro*; Yamamuro, Osamu*
Scientific Reports (Internet), 11(1), p.12098_1 - 12098_8, 2021/06
Times Cited Count:1 Percentile:23.97(Multidisciplinary Sciences)Nakajima, Kenji; Kawamura, Seiko; Kofu, Maiko; Murai, Naoki; Inamura, Yasuhiro; Kikuchi, Tatsuya*; Wakai, Daisuke*
JPS Conference Proceedings (Internet), 33, p.011089_1 - 011089_7, 2021/03
The recent update of AMATERAS, a cold-neutron disk-chopper spectrometer at Japan Proton Accelerator Research Complex (J-PARC), is reported. AMATERAS has been operating for a decade. Since 2017, some updates have been done or are underway, which include installing new detectors, replacing the vacuum system of the scattering chamber, and other works. We are also working on the re-investigation of the resolution function. Demonstration measurements were carried out at 1MW test operations done in 2018 and 2019. Plans of upgrading the spectrometer are currently being considered.
Yamamoto, Naoki*; Kofu, Maiko; Nakajima, Kenji; Nakagawa, Hiroshi; Shibayama, Naoya*
Journal of Physical Chemistry Letters (Internet), 12(8), p.2172 - 2176, 2021/03
Times Cited Count:5 Percentile:62.15(Chemistry, Physical)Hydration water plays a crucial role for activating the protein dynamics required for functional expression. Yet, the details are not understood about how hydration water couples with protein dynamics. A temperature hysteresis of the ice formation of hydration water is a key phenomenon to understand which type of hydration water, unfreezable or freezable hydration water, is crucial for the activation of protein dynamics. Using neutron scattering, we observed a temperature-hysteresis phenomenon in the diffraction peaks of the ice of freezable hydration water, whereas protein dynamics did not show any temperature hysteresis. These results show that the protein dynamics is not coupled with freezable hydration water dynamics, and unfreezable hydration water is essential for the activation of protein dynamics.
Luo, P.*; Zhai, Y.*; Leao, J. B.*; Kofu, Maiko; Nakajima, Kenji; Faraone, A.*; Zhang, Y.*
Journal of Physical Chemistry Letters (Internet), 12(1), p.392 - 398, 2021/01
Times Cited Count:3 Percentile:42.16(Chemistry, Physical)Using neutron spin-echo spectroscopy, we studied the microscopic structural relaxation of a prototypical network ionic liquid ZnCl at the structure factor primary peak and prepeak. The results show that the relaxation at the primary peak is faster than the prepeak and that the activation energy is
% higher. A stretched exponential relaxation is observed even at temperatures well-above the melting point
. Surprisingly, the stretching exponent shows a rapid increase upon cooling, especially at the primary peak, where it changes from a stretched exponential to a simple exponential on approaching the
. These results suggest that the appearance of glassy dynamics typical of the supercooled state even in the equilibrium liquid state of ZnCl
as well as the difference of activation energy at the two investigated length scales are related to the formation of a network structure on cooling.
Zhang, D.*; Hu, X.*; Chen, T.*; Abernathy, D. L.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Foley, B. J.*; Yoon, M.*; Choi, J. J.*; et al.
Physical Review B, 102(22), p.224310_1 - 224310_10, 2020/12
Times Cited Count:4 Percentile:34.14(Materials Science, Multidisciplinary)Nawa, Kazuhiro*; Hirai, Daigoro*; Kofu, Maiko; Nakajima, Kenji; Murasaki, Ryo*; Kogane, Satoshi*; Kimata, Motoi*; Nojiri, Hiroyuki*; Hiroi, Zenji*; Sato, Taku*
Physical Review Research (Internet), 2(4), p.043121_1 - 043121_11, 2020/12
The spin excitations of the =
anisotropic triangular antiferromagnet Ca
ReO
Cl
were investigated by inelastic neutron-scattering experiments. The spin excitation spectrum exhibits sharp dispersive modes in addition to a spinonlike continuum. The consistency with the simulated spectrum based on the random-phase approximation is better for Ca
ReO
Cl
than for Cs
CuCl
, indicating that the spin system in the former remains closer to a Tomonaga-Luttinger liquidlike disordered state.
Gonzalz, M. A.*; Borodin, O.*; Kofu, Maiko; Shibata, Kaoru; Yamada, Takeshi*; Yamamuro, Osamu*; Xu, K.*; Price, D. L.*; Saboungi, M.-L.*
Journal of Physical Chemistry Letters (Internet), 11(17), p.7279 - 7284, 2020/09
Times Cited Count:12 Percentile:69.68(Chemistry, Physical)Wu, P.*; Fan, F.-R.*; Hagihara, Masato*; Kofu, Maiko; Peng, K.*; Ishikawa, Yoshihisa*; Lee, S.*; Honda, Takashi*; Yonemura, Masao*; Ikeda, Kazutaka*; et al.
New Journal of Physics (Internet), 22(8), p.083083_1 - 083083_9, 2020/08
Times Cited Count:5 Percentile:51.93(Physics, Multidisciplinary)Thermoelectric material SnSe has aroused world-wide interests in the past years, and its inherent strong lattice anharmonicity is regarded as a crucial factor for its outstanding thermoelectric performance. However, the understanding of lattice anharmonicity in SnSe system remains inadequate, especially regarding how phonon dynamics are affected by this behavior. In this work, we present a comprehensive study of lattice dynamics on NaSn
Se
S
by means of neutron total scattering, inelastic neutron scattering, Raman spectroscopy as well as frozen-phonon calculations. Lattice anharmonicity is evidenced by pair distribution function, inelastic neutron scattering and Raman measurements. By separating the effects of thermal expansion and multi-phonon scattering, we found that the latter is very significant in high-energy optical phonon modes. The strong temperature-dependence of these phonon modes indicate the anharmonicity in this system. Moreover, our data reveals that the linewidths of high-energy optical phonons become broadened with mild doping of sulfur. Our studies suggest that the thermoelectric performance of SnSe could be further enhanced by reducing the contributions of high-energy optical phonon modes to the lattice thermal conductivity via phonon engineering.
Kofu, Maiko; Yamamuro, Osamu*
Journal of the Physical Society of Japan, 89(5), p.051002_1 - 051002_12, 2020/05
Times Cited Count:3 Percentile:37.27(Physics, Multidisciplinary)The behavior of hydrogen in metals has attracted much attention in fundamental and applied research areas for many decades. Among metals, palladium is remarkable in that it can absorb large quantities of hydrogen, and hydrogen atoms are highly mobile in the fcc Pd lattice. The dynamics of hydrogen in Pd have been investigated by means of neutron spectroscopy which is the best tool to provide insights into microscopic dynamics of hydrogen atoms. In this article, we review recent and historical neutron scattering works to facilitate the latest understanding of the hydrogen dynamics in bulk and nanometer-sized Pd hydrides.
Iida, Kazuki*; Kofu, Maiko; Suzuki, Katsuhiro*; Murai, Naoki; Kawamura, Seiko; Kajimoto, Ryoichi; Inamura, Yasuhiro; Ishikado, Motoyuki*; Hasegawa, Shunsuke*; Masuda, Takatsugu*; et al.
Journal of the Physical Society of Japan, 89(5), p.053702_1 - 053702_5, 2020/05
Times Cited Count:15 Percentile:81.4(Physics, Multidisciplinary)Allenspach, S.*; Biffin, A.*; Stuhr, U.*; Tucker, G. S.*; Kawamura, Seiko; Kofu, Maiko; Voneshen, D. J.*; Boehm, M.*; Normand, B.*; Laflorencie, N.*; et al.
Physical Review Letters, 124(17), p.177205_1 - 177205_7, 2020/05
Times Cited Count:8 Percentile:61.96(Physics, Multidisciplinary)Li, X.*; Liu, P.-F.*; Zhao, E.*; Zhang, Z.*; Guide, T.*; Le, M. D.*; Avdeev, M.*; Ikeda, Kazutaka*; Otomo, Toshiya*; Kofu, Maiko; et al.
Nature Communications (Internet), 11, p.942_1 - 942_9, 2020/02
Times Cited Count:27 Percentile:90.23(Multidisciplinary Sciences)In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic and phonon scattering resulting from the dynamic disorder, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in -MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the intrinsic distorted rocksalt sublattice in this compound, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in
-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.
Tomiyasu, Keisuke*; Ito, Naoko*; Okazaki, Ryuji*; Takahashi, Yuki*; Onodera, Mitsugi*; Iwasa, Kazuaki*; Nojima, Tsutomu*; Aoyama, Takuya*; Ogushi, Kenya*; Ishikawa, Yoshihisa*; et al.
Advanced Quantum Technologies (Internet), 1(3), p.1800057_1 - 1800057_7, 2018/12
Spin-state transition, also known as spin crossover, plays a key role in diverse systems. In theory, the boundary range between the low- and high-spin states is expected to enrich the transition and give rise to unusual physical states. However, no compound that realizes a nearly degenerate critical range as the ground state without requiring special external conditions has yet been experimentally identified. This study reports that the Sc substitution in LaCoO3 destabilizes its nonmagnetic low-spin state and generates an anomalous paramagnetic state accompanied by the enhancement of transport gap and magneto-lattice-expansion as well as the contraction of Co-O distance with the increase of electron site transfer. These phenomena are not well described by the mixture of conventional low- and high-spin states, but by their quantum superposition occurring on the verge of a spin-state transition.
Kofu, Maiko; Faraone, A.*; Tyagi, M.*; Nagao, Michihiro*; Yamamuro, Osamu*
Physical Review E, 98(4), p.042601_1 - 042601_6, 2018/10
Times Cited Count:4 Percentile:40.22(Physics, Fluids & Plasmas)