Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsuba, Kenichi; Kamiyama, Kenji; Toyooka, Junichi; Zuev, V. A.*; Kolodeshnikov, A. A.*
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 11 Pages, 2017/09
To clarify jet fragmentation and accompanying cooling behaviors of molten core materials discharged into sodium, results of the out-of-pile experiments with a simulant material (AlO) were analyzed. The results clarified that while AlO jets were entirely fragmented into smaller particles during their penetration to several tenths of a meter in depth of sodium, an additional significant distance was needed to cool down the particles to the degree that thermal loading on the steel structures could be neglected. Based on the results, it is concluded that in terms of the reduction of thermal load on the lower structures in the reactor vessels, the cooling distance after fragmentation should be treated.
Matsuba, Kenichi; Kamiyama, Kenji; Toyooka, Junichi; Zuev, V. A.*; Ganovichev, D. A.*; Kolodeshnikov, A. A.*
Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 5 Pages, 2016/11
Molten fuel discharge through control rod guide tubes (CRGTs) is a key process that dominates the termination of core disruptive accidents of sodium-cooled fast reactors, since fuel dispersion from the core contributes to the achievement of both deeper subcriticality in the degraded core and formation of coolable debris bed. Within a framework of a collaborative research program between Japan Atomic Energy Agency and National Nuclear Center of the Republic of Kazakhstan, called EAGLE program, a new experimental program has been started with out-of-pile experiments to clarify the fuel discharge through CRGTs. This paper presents the status of the new program, including experimental results obtained so far.
Matsuba, Kenichi; Kamiyama, Kenji; Toyooka, Junichi; Tobita, Yoshiharu; Zuyev, V. A.*; Kolodeshnikov, A. A.*; Vassiliev, Y. S.*
Mechanical Engineering Journal (Internet), 3(3), p.15-00595_1 - 15-00595_8, 2016/06
To develop a method for evaluating the distance for fragmentation of molten core material discharged into sodium, the particle size distribution of alumina debris obtained in the FR tests was analyzed. The mass median diameters of solidified alumina particles were around 0.3 mm, which are comparable to particle sizes predicted by hydrodynamic instability theories such as Kelvin-Helmholtz instability. However, even though hydrodynamic instability theories predict that particle size decreases with an increase of Weber number, such the dependence of particle size on We was not observed in the FR tests. It can be interpreted that this tendency of measured mass median suggests that before hydrodynamic instabilities sufficiently grow to induce fragmentation, thermal phenomena such as local coolant vaporization and resultant vapor expansion accelerate fragmentation.
Matsuba, Kenichi; Kamiyama, Kenji; Toyooka, Junichi; Tobita, Yoshiharu; Zuev, V. A.*; Kolodeshnikov, A. A.*; Vasilyev, Y. S.*
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 6 Pages, 2015/05
To develop a method for evaluating the distance for fragmentation of molten core material discharged into sodium, the particle size distribution of alumina debris obtained in the FR tests was analyzed. The mass median diameters of solidified alumina particles were around 0.4 mm, which are comparable to particle sizes predicted by hydrodynamic instability theories such as Kelvin-Helmholtz instability. However, even though hydrodynamic instability theories predict that particle size decreases with an increase of Weber number, such the dependence of particle size on We was not observed in the FR tests. It can be interpreted that the tendency of measured mass median diameters (i.e., non-dependence on Weber number) suggests that before hydrodynamic instabilities sufficiently grow to induce fragmentation, thermal phenomena such as local coolant vaporization and resultant vapor expansion accelerate fragmentation.
Kamiyama, Kenji; Konishi, Kensuke; Sato, Ikken; Toyooka, Junichi; Matsuba, Kenichi; Suzuki, Toru; Tobita, Yoshiharu; Pakhnits, A. V.*; Vityuk, V. A.*; Vurim, A. D.*; et al.
Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 8 Pages, 2014/12
Kamiyama, Kenji; Konishi, Kensuke; Sato, Ikken; Toyooka, Junichi; Matsuba, Kenichi; Zuyev, V. A.*; Pakhnits, A. V.*; Vityuk, V. A.*; Vurim, A. D.*; Gaidaichuk, V. A.*; et al.
Journal of Nuclear Science and Technology, 51(9), p.1114 - 1124, 2014/09
Times Cited Count:16 Percentile:72.71(Nuclear Science & Technology)Kamiyama, Kenji; Saito, Masaki*; Matsuba, Kenichi; Isozaki, Mikio; Sato, Ikken; Konishi, Kensuke; Zuyev, V. A.*; Kolodeshnikov, A. A.*; Vassiliev, Y. S.*
Journal of Nuclear Science and Technology, 50(6), p.629 - 644, 2013/06
Times Cited Count:22 Percentile:82.44(Nuclear Science & Technology)In core disruptive accidents of sodium cooled fast reactors, fuel discharge from the core region reduces the possibility of severe re-criticality events. In-core coolant channels such as the control-rod guide tube and a concept of the FAIDUS (Fuel Assembly with Inner Duct Structure) provide effective fuel discharge paths if effects of sodium in these paths on molten fuel discharge are limited. Two series of experiments conducted in the present study showed that the discharge path can be entirely voided by the vaporization of a part of the coolant at the initial melt discharge phase, that this is followed by coolant vapor expansion, and that melt penetrates significantly into the voided channel. In conclusion, the effects of the sodium on fuel discharge are limited and therefore in-core coolant channels provide effective fuel discharge paths for reducing neutronic activity.
Matsuba, Kenichi; Kamiyama, Kenji; Konishi, Kensuke; Toyooka, Junichi; Sato, Ikken; Zuev, V. A.*; Kolodeshnikov, A. A.*; Vasilyev, Y. S.*
Proceedings of 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8) (USB Flash Drive), 7 Pages, 2012/12
A series of fragmentation tests (FR tests) for molten oxide was conducted to obtain experimental knowledge on the distance for fragmentation of molten core material discharged into the lower sodium plenum. Approx. 714 kg of molten alumina was discharged into a sodium pool (depth: 1.3 m, diameter: 0.4 m, temperature: approx. 673 K) through a duct (inner diameter: 4063 mm). The test results showed that the molten alumina was fragmented into particles within 1 m from the surface of the sodium pool. The estimated distances for fragmentation in the FR tests were roughly 6070% lower than the predictions by the existing representative correlation. The experimental knowledge confirms the possibility that the distance for fragmentation of the molten core material can be significantly reduced due to thermal interactions in the lower sodium plenum.
Kamiyama, Kenji; Konishi, Kensuke; Sato, Ikken; Toyooka, Junichi; Matsuba, Kenichi; Zuyev, V. A.*; Pakhnits, A. V.*; Vurim, A. D.*; Gaidaichuk, V. A.*; Kolodeshnikov, A. A.*; et al.
Proceedings of 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8) (USB Flash Drive), 7 Pages, 2012/12
In order to eliminate energetics potential in the case of postulated core disruptive accidents (CDAs) of sodium-cooled fast reactors, introduction of a fuel subassembly with an inner duct structure has been considered. Recently, a design option which leads molten fuel to discharge upward is considered to minimize developmental efforts for the fuel subassembly fabrication. In this paper, a series of out-of-pile tests and one in-pile test were presented. The out-of-pile tests were conducted to investigate the effects of driving pressures on upward discharge, and the in-pile test was conducted to demonstrate a sequence of upward discharge behavior of molten-fuel. Based on these experimental results, it is concluded that the most of molten-fuel is expected to complete discharging upward before core melting progression, and thereby, introduction of the fuel subassembly with the upward discharge duct has the sufficient potential to eliminate energetics events.
Sato, Ikken; Tobita, Yoshiharu; Konishi, Kensuke; Kamiyama, Kenji; Toyooka, Junichi; Nakai, Ryodai; Kubo, Shigenobu*; Kotake, Shoji*; Koyama, Kazuya*; Vassiliev, Y. S.*; et al.
Journal of Nuclear Science and Technology, 48(4), p.556 - 566, 2011/03
In the JSFR design, elimination of severe recriticality events in the Core Disruptive Accident (CDA) is intended as an effective measure to assure retention of the core materials within the reactor vessel. The design strategy is to control the potential of excessive void reactivity insertion in the Initiating Phase selecting appropriate design parameters such as maximum void reactivity on one hand, and to exclude core-wide molten-fuel-pool formation, which has been the main issue of CDA, with introduction of Inner Duct on the other hand. The effectiveness of these measures are reviewed based on existing experimental data and evaluations performed with validated analysis tools. It is judged that the present JSFR design can exlude severe power burst events.
Matsuba, Kenichi; Isozaki, Mikio; Toyooka, Junichi; Kamiyama, Kenji; Zuev, V.*; Kolodeshnikov, A.*
no journal, ,
In order to assess the fragmentation behavior of molten core material discharged into the lower sodium plenums during core disruptive accidents in sodium-cooled fast reactors, applicability of empirical correlations of the distance for fragmentation was investigated by comparing the values predicted using a correlation with the results obtained in the experiments where a simulated core material (molten alumina) was discharged into a sodium pool.
Nakatsuka, Toru; Levin, A. G.*; Ueta, Shohei; Gizatulin, S.*; Tachibana, Yukio; Kolodeshnikov, A.*; Sakaba, Nariaki; Chakrov, P.*; Kunitomi, Kazuhiko; Vassiliev, Y. S.*; et al.
no journal, ,
The small-sized high-temperature gas-cooled reactors (HTGRs) with an electric power rating of less than 300 MWe can greatly facilitate decentralized energy supply, and create new industries and stimulate economical development in cities and localities as well as in those remote regions to which power transmission grids are undeveloped in developing countries such as Kazakhstan. In 2007, Japan Atomic Energy Agency (JAEA) and National Nuclear Center of Kazakhstan (NNC) have started to collaborate in nuclear energy research and development for early realization of deployment of the HTGR in Kazakhstan, and to support for the Kazakhstan HTGR (KHTR) Project by utilizing the technologies developed under the High Temperature Engineering Test Reactor (HTTR) Project. In 2010, JAEA started a conceptual design of KHTR steam turbine system with thermal power of 50 MW and the maximum coolant temperature at reactor outlet of 750 C for earlier development of HTGRs with support of Japan parties, which consists of Japanese industrial companies, etc. in order to support NNC for preparation of the feasibility study of KHTR.
Matsuba, Kenichi; Kamiyama, Kenji; Konishi, Kensuke*; Toyooka, Junichi; Sato, Ikken; Zuev, V.*; Kolodeshnikov, A.*; Yury, V.*
no journal, ,
In-vessel retention of molten core fuel with the use of debris trays in a reactor lower plenum is being studied as a mitigation measure against core disruptive accident for sodium-cooled fast reactors. If the molten core fuel is finely fragmented before coming at the debris trays, fuel coolability on the debris trays can be enhanced. In the present study, the length for molten jet break-up due to fragmentation was measured with out-of-pile experiments in which about 10 kg of molten alumina was injected into a sodium pool.
Kamiyama, Kenji; Konishi, Kensuke; Sato, Ikken; Kubo, Shigenobu*; Kotake, Shoji*; Shimakawa, Yoshio*; Koyama, Kazuya*; Zuyev, V.*; Vassiliev, Y. S.*; Kolodeshnikov, A.*
no journal, ,
no abstracts in English
Kamiyama, Kenji; Matsuba, Kenichi; Tobita, Yoshiharu; Toyooka, Junichi; Pakhnits, A. V.*; Vityuk, V. A.*; Kukushkin, I.*; Vurim, A. D.*; Baklanov, V. V.*; Kolodeshnikov, A. A.*
no journal, ,
no abstracts in English
Konishi, Kensuke; Kubo, Shigenobu*; Koyama, Kazuya*; Kamiyama, Kenji; Toyooka, Junichi; Sato, Ikken; Kotake, Shoji*; Vurim, A. D.*; Zuyev, V.*; Pakhnits, A. V.*; et al.
no journal, ,
In the EAGLE program, several in-pile and out-of-pile tests have been conducted by August 2006, under a co-operation between JAEA and NNC/RK. The main objectives of these tests are; (1) to demonstrate effectiveness of special design concepts to eliminate the re-criticality issue in the course of CDAs of SFRs, and (2) to acquire basic information on early-phase relocation of molten-core materials toward cold regions surrounding the core, which would be applicable to various core design concepts. As the final step of this program, integral in-pile tests simulating realistic accident conditions were conducted. Geometry of the test apparatus adopted in these tests is corresponding to a typical special design concept equipped with a "discharge duct" within each fuel sub-assembly. In these tests, fuel-steel mixture pool was successfully realized and discharge of the pool materials through the duct was observed.
Matsuba, Kenichi; Kamiyama, Kenji; Tobita, Yoshiharu; Toyooka, Junichi; Zuev, V.*; Kolodeshnikov, A.*; Vasilyev, Y.*
no journal, ,
In order to obtain experimental knowledge on fragmentation behavior of molten core material discharged into the lower sodium plenum in the reactor vessel during core disruptive accidents of sodium cooled fast reactors, a series of fragmentation experiments have been carried out with a molten oxide. Based on the experimental results, dominant mechanisms for the fragmentation behavior was discussed.
Kubo, Shigenobu; Tobita, Yoshiharu; Sato, Ikken; Kotake, Shoji*; Endo, Hiroshi*; Koyama, Kazuya*; Konishi, Kensuke; Kamiyama, Kenji; Matsuba, Kenichi; Toyooka, Junichi; et al.
no journal, ,
As the results of good collaboration between Kazakhstan and Japan in EAGLE-1and 2, it was shown that there exists a solution to the recriticality issue of SFR, which has been one of the major safety issues for more than a half century from the beginning of the SFR development. Experimental techniques and facilities have been developed for the SFR severe accident study. Since 2014, JAEA participates the ASTRID program in which severe accident study is one of important issues. The EAGLE-1 and 2 data will be also used as an essential part of the severe accident study for ASTRID. EAGLE-3 was just started from beginning of 2015. Points of experiments moved into the later phase of core damage process, i.e., material relocation and cooling after achieving neutronic shutdown. A number of out-of-pile tests and in-pile tests are planned in coming five years.