Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 26

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of radiation resistant monitoring system in light water reactor

Takeuchi, Tomoaki; Otsuka, Noriaki; Nakano, Hiroko; Iida, Tatsuya*; Ozawa, Osamu*; Shibagaki, Taro*; Komanome, Hirohisa*; Tsuchiya, Kunihiko

QST-M-16; QST Takasaki Annual Report 2017, P. 67, 2019/03

no abstracts in English

Journal Articles

Development of radiation resistant monitoring camera system

Takeuchi, Tomoaki; Otsuka, Noriaki; Watanabe, Takashi*; Tanaka, Shigeo*; Ozawa, Osamu*; Komanome, Hirohisa*; Ueno, Shunji*; Tsuchiya, Kunihiko

Proceedings of 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2017) (Internet), 3 Pages, 2018/11

no abstracts in English

Journal Articles

Evaluation of in-water wireless transmission system under the conditions simulated the severe accident

Otsuka, Noriaki; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Shibagaki, Taro*; Komanome, Hirohisa*

Proceedings of 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2017) (Internet), 3 Pages, 2018/11

no abstracts in English

JAEA Reports

Degradation behavior of optical components by gamma irradiation (Contract research)

Takeuchi, Tomoaki; Shibata, Hiroshi; Hanakawa, Hiroki; Uehara, Toshiaki*; Ueno, Shunji*; Tsuchiya, Kunihiko; Kumahara, Hajime*; Shibagaki, Taro*; Komanome, Hirohisa*

JAEA-Technology 2017-026, 26 Pages, 2018/02

JAEA-Technology-2017-026.pdf:4.0MB

Under severe accidents, high-integrity transmission techniques are necessary so as to monitor the situation of the nuclear power plant. In this study, effects of gamma irradiation up to 10$$^{6}$$Gy on properties of optical devices were evaluated toward the development of a radiation-resistant in-water wireless transmission system using visible light. After the irradiation, for the LEDs, the total luminous flux decreased and the browning of resin lenses occurred. Meanwhile, the current-voltage characteristics hardly changed. For the PDs, the light sensitivity decreased and the browning of resin window occurred. The dark currents of PDs did not become large enough to adversely affect transmission. These results indicated that both the decreases of the total luminous flux of the LEDs and the light sensitivity of the PDs were mainly caused by not the degradation of the semiconductor parts but the browning of the resin parts by the irradiation. In addition, basic decrease behaviors of light transmission of several different types of glasses by gamma irradiation were also obtained so as to select the suitable optical windows and filters for the developing radiation-resistant in-water wireless transmission system.

Journal Articles

Image processing method for optical transmission system using 2-dimensional LED matrix array in spent fuel pool

Yatsuzuka, Junji*; Shibagaki, Taro*; Otsuka, Noriaki; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Komanome, Hirohisa*

Bijon Gijutsu No Jitsuriyo Wakushoppu (ViEW 2017) Koen Yoshishu (USB Flash Drive), 6 Pages, 2017/12

no abstracts in English

Journal Articles

A New radiation hardened CMOS image sensor for nuclear plant

Watanabe, Takashi*; Takeuchi, Tomoaki; Ozawa, Osamu*; Komanome, Hirohisa*; Akahori, Tomoyuki*; Tsuchiya, Kunihiko

Proceedings of 2017 International Image Sensor Workshop (IISW 2017) (Internet), p.206 - 209, 2017/05

no abstracts in English

Journal Articles

Development of high-performance monitoring system under severe accident condition

Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Komanome, Hirohisa*; Miura, Kuniaki*; Ishihara, Masahiro

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

After the accident at the Fukushima Dai-ichi (1F) Nuclear Power Plant (NPP), the Japanese Government referred to "Enhancement of instrumentation to identify the status of the reactors and PCVs", in the report of Japanese government to the IAEA ministerial conference in June 2011. In response to these provisions, a research and development of a monitoring system for NPPs situations during severe accidents started in November 2012. The objectives of the R&D are composed of radiation-resistant monitoring camera, radiation-resistant in-water transmission system, and heat-resistant signal cable. For all the three objectives, the elemental technologies have been already developed and now trial system are being fabricated and tested under simulated conditions of severe accidents. The results will enable us to determine the basic specifications of the systems and to provide the information about application limits for users.

Journal Articles

Development of radiation-resistant in-water wireless transmission system using light emitting diodes and photo diodes

Takeuchi, Tomoaki; Shibata, Hiroshi; Otsuka, Noriaki; Uehara, Toshiaki; Tsuchiya, Kunihiko; Shibagaki, Taro*; Komanome, Hirohisa*

IEEE Transactions on Nuclear Science, 63(5), p.2698 - 2702, 2016/10

 Times Cited Count:3 Percentile:28.28(Engineering, Electrical & Electronic)

In response to the lesson of the accident at the Fukushima Dai-ichi Nuclear Power Plant, we started a development of a radiation-resistant in-water wireless transmission system. In this study, capability of light emitting diodes (LED) and photo diodes (PD) as light emitting and receiving devices was researched. Results of irradiation tests of LEDs and PDs up to 1 MGy indicated a main cause of the degradation of the optical performances of the diodes was not the radiation damage at the semiconductor parts but the coloring of the resin parts. Assuming that the use of the candidate LED and PD, the PD's output current generated by the emission light of the LED at five meters away in water was estimated to be detectable intensity even considering the effects of the absorption of the light by water and the increased dark current by 1 MGy irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using LEDs and PDs in principle.

Journal Articles

Development of radiation-resistant in-water wireless transmission system

Takeuchi, Tomoaki; Otsuka, Noriaki; Shibagaki, Taro*; Komanome, Hirohisa*; Ueno, Shunji*; Tsuchiya, Kunihiko

Nihon Hozen Gakkai Dai-13-Kai Gakujutsu Koenkai Yoshishu, p.379 - 386, 2016/07

no abstracts in English

Journal Articles

Gamma irradiation effects of image sensor for radiation-resistant camera

Takeuchi, Tomoaki; Otsuka, Noriaki; Tsuchiya, Kunihiko; Tanaka, Shigeo*; Ozawa, Osamu*; Komanome, Hirohisa*; Watanabe, Takashi*; Ueno, Shunji*

Nihon Hozen Gakkai Dai-13-Kai Gakujutsu Koenkai Yoshishu, p.391 - 394, 2016/07

no abstracts in English

Journal Articles

Status of R&D of high-performance monitoring system under sever accident

Tsuchiya, Kunihiko; Takeuchi, Tomoaki; Komanome, Hirohisa*; Miura, Kuniaki*; Araki, Masanori; Ishihara, Masahiro

Nihon Hozen Gakkai Dai-13-Kai Gakujutsu Koenkai Yoshishu, p.375 - 378, 2016/07

no abstracts in English

Journal Articles

Development of radiation resistant camera system

Takeuchi, Tomoaki; Otsuka, Noriaki; Watanabe, Takashi*; Kamiyanagi, Tomohiro*; Komanome, Hirohisa*; Ueno, Shunji*; Tsuchiya, Kunihiko

Proceedings of Decommissioning and Remote Systems 2016 (D&RS 2016) (CD-ROM), p.263 - 264, 2016/07

In response to the lesson of the accident at the Fukushima Dai-ichi Nuclear Power Plant, we started a development of a radiation resistant monitoring camera system. In this study, improvement of radiation resistance of the imaging sensor was addressed as the main target. Three different types of CMOS image sensors with field plate structure and three transistors (3TPD), photogate structure and three (3TPG) or four transistors (4TPG) were designed and fabricated. The sensors were irradiated up to 70 kGy at the $$^{60}$$Co $$gamma$$-ray irradiation facility at Takasaki Advanced Radiation Research Institute in Japan Atomic Energy Agency. After irradiation, the dark current of the 4TPG rapidly increased and excessed that of the 3T types at least by 50 kGy. The large increase of the dark current of the 4TPG resulted in almost no sensitivity at least by 50 kGy. On the other hand, the sensitivities of the 3T types remained usable values and 3TPG had larger sensitivity than 3TPD after 50 kGy. As the results, the 3TPG sensor was revealed to be the most advantageous one in terms of dark current and sensitivity among the fabricated three sensors.

Journal Articles

Research and development of high-performance instruments for safety measure for LWRs

Takeuchi, Tomoaki; Ueno, Shunji; Komanome, Hirohisa*; Otsuka, Noriaki; Shibata, Hiroshi; Kimura, Nobuaki; Matsui, Yoshinori; Tsuchiya, Kunihiko; Araki, Masanori

Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 7 Pages, 2013/10

During the station blackout situation at the Fukushima Dai-ichi (1F) Nuclear Power Plant, conventional in-pile instrumentation systems did not work sufficiently, resulting in the progress of the severe accident. In June 2011, the Japanese government referred to "Enhancement of instrumentation to identify the status of the reactors and PCVs" as a lesson of the accident at the 1F NPP, in the report of Japanese government to the IAEA ministerial conference in accordance with such situation, we started from 2012 a research and development which corresponds to the provisions so as to monitor the NPPs situations during a severe accident. In this research and development, we have been building of technical bases of a radiation-resistant high-definition and high-sensitivity monitoring camera, a wireless transmission system, and radiation- and heat-resistant signal line. The objective and latest progress situations of the R&D including the results of the characteristic experiments will be introduced in this symposium.

Oral presentation

$$gamma$$-ray degradation of light emitting and receiving devices for in-water wireless transmission system

Shibata, Hiroshi; Hanakawa, Hiroki; Takeuchi, Tomoaki; Ueno, Shunji; Uehara, Toshiaki; Tsuchiya, Kunihiko; Araki, Masanori; Shibagaki, Taro*; Komanome, Hirohisa*

no journal, , 

no abstracts in English

Oral presentation

Research and development of high-performance monitoring systems for safety measures of LWRs, 3; An in-water wireless transmission system with environmental robustness

Takeuchi, Tomoaki; Shibata, Hiroshi; Ueno, Shunji; Uehara, Toshiaki; Tsuchiya, Kunihiko; Shibagaki, Taro*; Komanome, Hirohisa*

no journal, , 

no abstracts in English

Oral presentation

Research and development of high-performance monitoring systems for safety measures of LWRs, 2; $$gamma$$-irradiation effects on imaging sensors in radiation-resistant monitoring camera

Takeuchi, Tomoaki; Ueno, Shunji; Shibata, Hiroshi; Tsuchiya, Kunihiko; Kamiyanagi, Tomohiro*; Komanome, Hirohisa*; Watanabe, Takashi*

no journal, , 

no abstracts in English

Oral presentation

Research and development of high-performance monitoring systems for safety measures of LWRs, 1; Status on R&D of high-performance monitoring systems

Tsuchiya, Kunihiko; Takeuchi, Tomoaki; Ueno, Shunji; Araki, Masanori; Komanome, Hirohisa*

no journal, , 

no abstracts in English

Oral presentation

Development of radiation resistant in-water transmission system using visible light with environmental robustness

Takeuchi, Tomoaki; Otsuka, Noriaki; Nakano, Hiroko; Shibagaki, Taro*; Komanome, Hirohisa*; Tsuchiya, Kunihiko

no journal, , 

Considering that reactor buildings could be filled with water under severe accidents, a development of the wireless transmission system in water is necessary. In this study, transmission method using visible light was adopted because of its relatively lower attenuation rate and higher transmission rate in water. In the designed transmission system, two-dimensional transmission devices were adopted. LEDs arranged in a two-dimensional array and a camera using a CMOS image sensor, that is like a 2D aggregation of PDs, were used as the light emission and receiving devices, respectively. Moreover, both of pattern and flicker signals can be simultaneously emitted. To confirm the environmental robustness, the in-water transmission tests using the two-dimensional transmission devices were performed with and without air bubbles. The results indicated the pattern signals were more easily influenced than the flicker signals by the air bubbles. In addition, surface mounting LEDs were more suitable than bullet-type LEDs because of their good distinctiveness of the light spots from each LED. On the other hand, $$gamma$$ irradiation tests for the LEDs were performed. The results again indicated surface mounting LEDs were advantageous because the decrease rates of the total luminous flux with absorbed $$gamma$$ dose were lower than that of the bullet-type LEDs.

Oral presentation

Evaluation of optical instruments of in-water wireless transmission system under $$gamma$$-ray condition

Otsuka, Noriaki; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Shibagaki, Taro*; Komanome, Hirohisa*

no journal, , 

no abstracts in English

Oral presentation

$$gamma$$ irradiation effects of image sensor for radiation-resistant camera

Takeuchi, Tomoaki; Otsuka, Noriaki; Kamiyanagi, Tomohiro*; Watanabe, Takashi*; Komanome, Hirohisa*; Ueno, Shunji*; Tsuchiya, Kunihiko

no journal, , 

no abstracts in English

26 (Records 1-20 displayed on this page)