Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kon, Akira; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Ogura, Koichi; Mori, Michiaki; Sakaki, Hironao; Kando, Masaki; Kondo, Kiminori
Journal of Physics; Conference Series, 717, p.012103_1 - 012103_4, 2016/05
Times Cited Count:2 Percentile:66.62(Physics, Applied)Nishiuchi, Mamiko*; Sakaki, Hironao*; Esirkepov, T. Zh.*; Nishio, Katsuhisa; Pikuz, T. A.*; Faenov, A. Ya.*; Skobelev, I. Yu.*; Orlandi, R.; Pirozhkov, A. S.*; Sagisaka, Akito*; et al.
Plasma Physics Reports, 42(4), p.327 - 337, 2016/04
Times Cited Count:13 Percentile:58.65(Physics, Fluids & Plasmas)A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys. Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.
Bulanov, S. V.; Esirkepov, T. Z.; Kando, Masaki; Kiriyama, Hiromitsu; Kondo, Kiminori
Journal of Experimental and Theoretical Physics, 122(3), p.426 - 433, 2016/03
Kanasaki, Masato; Jinno, Satoshi*; Sakaki, Hironao; Kondo, Kiminori; Oda, Keiji*; Yamauchi, Tomoya*; Fukuda, Yuji
Plasma Physics and Controlled Fusion, 58(3), p.034013_1 - 034013_6, 2016/03
Times Cited Count:23 Percentile:78.58(Physics, Fluids & Plasmas)In order to understand the synergetic interplay between the Coulomb explosion of clusters and the background gas dynamics, we have conducted ion acceleration experiments using CO clusters (250 nm in dia.) embedded in background H gas with the J-KAREN laser (1 J, 40 fs, 10 contrast) at JAEA-KPSI. By a careful analysis of etch pit positions on CR-39 and their structures including the etch pit growth behavior analysis with the multi-step etching technique, energy spectra for protons from the background gas and carbon/oxygen ions from the clusters are obtained separately. The maximum energies of protons and carbon/oxygen ions are determined as 1.6 MeV and 1.1 MeV/u, respectively. Based on the experimental results, the acceleration mechanism of the background gas ions induced by Coulomb explosion of clusters is discussed with the help from numerical simulations which employ a particle-in-cell (PIC) method including relaxation and ionization processes of plasma particles.
Yogo, Akifumi*; Bulanov, S. V.; Mori, Michiaki; Ogura, Koichi; Esirkepov, T. Z.; Pirozhkov, A. S.; Kanasaki, Masato*; Sakaki, Hironao; Fukuda, Yuji; Bolton, P.; et al.
Plasma Physics and Controlled Fusion, 58(2), p.025003_1 - 025003_7, 2016/02
Times Cited Count:9 Percentile:45.47(Physics, Fluids & Plasmas)Oks, E.*; Dalimier, E.*; Faenov, A.*; Pikuz, T.*; Fukuda, Yuji; Andreev, A.*; Koga, J. K.; Sakaki, Hironao; Kotaki, Hideyuki; Pirozhkov, A. S.; et al.
Optics Express (Internet), 23(25), p.31991 - 32005, 2015/12
Times Cited Count:7 Percentile:38.53(Optics)We present experiments dealing with a femtosecond laser-driven cluster-based plasma, where by analyzing the nonlinear phenomenon of satellites of spectral lines of Ar XVII, we revealed the nonlinear phenomenon of the generation of the second harmonic of the laser frequency. For performing this analysis we developed new results in the theory of satellites of spectral lines. From such lineshape analysis we found, in particular, that the efficiency of converting the short (40 fs) intense (310 W/cm) incident laser light into the second harmonic was 2%. This result is in the excellent agreement with the 2-Dimensional Particle-In-Cell (2D PIC) simulation that we also performed. There is also an order of magnitude agreement between the thresholds for the SHG found from the line shape analysis and from the 2D PIC simulations.
Esirkepov, T. Z.; Bulanov, S. S.*; Koga, J. K.; Kando, Masaki; Kondo, Kiminori; Rosanov, N. N.*; Korn, G.*; Bulanov, S. V.
Physics Letters A, 379(36), p.2044 - 2054, 2015/09
Times Cited Count:52 Percentile:89.73(Physics, Multidisciplinary)Bulanov, S. V.; Yogo, Akifumi*; Esirkepov, T. Z.; Koga, J. K.; Bulanov, S. S.*; Kondo, Kiminori; Kando, Masaki
Physics of Plasmas, 22(6), p.063108_1 - 063108_11, 2015/06
Times Cited Count:7 Percentile:32.46(Physics, Fluids & Plasmas)Nishiuchi, Mamiko; Sakaki, Hironao; Esirkepov, T. Z.; Nishio, Katsuhisa; Pikuz, T. A.*; Faenov, A. Ya.*; Pirozhkov, A. S.; Sagisaka, Akito; Ogura, Koichi; Kanasaki, Masato; et al.
Research Using Extreme Light; Entering New Frontiers with Petawatt-Class Lasers II (Proceedings of SPIE, Vol.9515), p.95151D_1 - 95151D_4, 2015/06
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of 10 J laser energy, 36 fs pulse width, and the contrast level of 10 from 200 TW class Ti:sapphire J-KAREN laser system at JAEA is used in the experiment. Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of 10Wcm interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.
Bulanov, S. V.; Esirkepov, T. Z.; Koga, J. K.; Pirozhkov, A. S.; Kondo, Kiminori; Kando, Masaki
Research Using Extreme Light; Entering New Frontiers with Petawatt-Class Lasers II (Proceedings of SPIE, Vol.9515), p.95150C_1 - 95150C_13, 2015/06
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Nishiuchi, Mamiko; Sakaki, Hironao; Esirkepov, T. Z.; Nishio, Katsuhisa; Pikuz, T.*; Faenov, A.*; Skobelev, I. Yu.*; Orlandi, R.; Sako, Hiroyuki; Pirozhkov, A. S.; et al.
Physics of Plasmas, 22(3), p.033107_1 - 033107_8, 2015/03
Times Cited Count:72 Percentile:96.81(Physics, Fluids & Plasmas)Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.
Kiriyama, Hiromitsu; Mori, Michiaki; Pirozhkov, A. S.; Ogura, Koichi; Sagisaka, Akito; Kon, Akira; Esirkepov, T. Z.; Hayashi, Yukio; Kotaki, Hideyuki; Kanasaki, Masato*; et al.
IEEE Journal of Selected Topics in Quantum Electronics, 21(1), p.1601118_1 - 1601118_18, 2015/01
Times Cited Count:61 Percentile:95.30(Engineering, Electrical & Electronic)This paper reviews the development of a high-contrast high-intensity petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser for research on high field science. We discuss in detail the design, performance and characterization of the laser. We also describe the on-going upgrade of the laser system and some applications for the laser in relativistic dominated laser-matter interactions.
Bulanov, S. V.; Esirkepov, T. Z.; Kando, Masaki; Koga, J. K.; Kondo, Kiminori; Korn, G.*
Plasma Physics Reports, 41(1), p.1 - 51, 2015/01
Times Cited Count:99 Percentile:98.68(Physics, Fluids & Plasmas)Jinno, Satoshi; Fukuda, Yuji; Sakaki, Hironao; Yogo, Akifumi; Kanasaki, Masato; Kondo, Kiminori; Faenov, A. Y.; Skobelev, I. Yu.*; Pikuz, T.; Boldarev, A. S.*; et al.
Progress in Ultrafast Intense Laser Science XI; Springer Series in Chemical Physics, Vol.109, p.215 - 233, 2015/00
Clusters formed in supersonic gas expansion through a three-staged conical nozzle have been verified by measuring the angular distribution of the light scattered from cluster target. The size distirbutions of the clusters are calculated based on the Mie theory. The reliability of the size measurement is verified to be an experimental error of 10% using standard particles. The mean sizes of CO clusters for the cases of CO/H and CO/He mixed-gas targets are estimated to be 0.26 m and 0.22 m, respectively. For the CO/H, the cluster density is estimated to be 5.5 clusters/cm by measuring the attenuation of the laser beam intensity. Furthermore, total gas density profiles are obtained via the Abel inversion from the phase shift of the light passing through the target using an interferometer. The variation of the cluster mass fraction along the radial direction of the target is almost constant, which is consistent with a Boldarev's model.
Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Faenov, A. Y.*; Pikuz, T. A.*; Kawachi, Tetsuya; Sagisaka, Akito; Koga, J. K.; Mori, Michiaki; Kawase, Keigo*; et al.
RAL-TR-2015-025, P. 22, 2015/00
Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Gallegos, P.*; Ahmed, H.*; Ragozin, E. N.*; Faenov, A. Ya.*; Pikuz, T. A.*; Kawachi, Tetsuya; Sagisaka, Akito; et al.
New Journal of Physics (Internet), 16(9), p.093003_1 - 093003_30, 2014/09
Times Cited Count:30 Percentile:80.89(Physics, Multidisciplinary)Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.
Reza Kenkyu, 42(6), p.441 - 447, 2014/06
We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.
Esirkepov, T. Z.; Koga, J. K.; Sunahara, Atsushi*; Morita, Toshimasa; Nishikino, Masaharu; Kageyama, Kei*; Nagatomo, Hideo*; Nishihara, Katsunobu; Sagisaka, Akito; Kotaki, Hideyuki; et al.
Nuclear Instruments and Methods in Physics Research A, 745, p.150 - 163, 2014/05
Times Cited Count:45 Percentile:96.27(Instruments & Instrumentation)Sakaki, Hironao; Fukuda, Yuji; Nishiuchi, Mamiko; Jinno, Satoshi; Kanasaki, Masato; Yogo, Akifumi; Kondo, Kiminori; Saito, Fumihiro; Fukami, Tomoyo; Ueno, Masayuki; et al.
Progress in Nuclear Science and Technology (Internet), 4, p.182 - 185, 2014/04
The concept of a compact ion particle accelerator has become attractive in view of recent progress in laser-driven ions acceleration. In the development of many applications of laser-accelerated ions, it is necessary for securing the radiation safety to calculate the dose evaluation. The dose was measured with the radio-photoluminescent (RPL) glass dosimeter on the test beamline of at laser-driven accelerator. The Monte Carlo code, PHITS (Particle and Heavy Ion Transport code system) simulation is shown to be reasonably predictive at the test beamline for measured with the RPL glass dosimeter. We compare of the measured dose level on the laser-driven accelerator with the result of PHITS code in this report.
Mori, Michiaki; Kando, Masaki; Kotaki, Hideyuki; Hayashi, Yukio; Kiriyama, Hiromitsu; Okada, Hajime; Pirozhkov, A. S.; Bulanov, S. V.; Kondo, Kiminori; Bolton, P.
JPS Conference Proceedings (Internet), 1, p.015094_1 - 015094_6, 2014/03
We report on the appropriate and inappropriate gas materials to generate energetic electrons. The 4-TW peak power and 40-fs pulse duration laser beam illuminated the gas-jet target with intensity of 910W/cm measured in vacuum. We investigated energetic electron beam generation using neon and argon. Energetic electron beam was observed in argon at the lowest neutral gas density of 510cm. However, no energetic electrons ( 1 MeV, 1 pC) were observed in neon although neutral gas density is increased from510cm to 510cm. By considering ionization stage at such an intensity, the maximum plasma density is reached to be a quarter critical plasma density, at which the maximum growth-rate of laser-plasma instability is expected. On the other hand, propagation of the pumping laser was observed in neon and argon by using optical probing. Significantly different images were observed. The structure of the laser channel for energetic electron beam generation that observed in argon was absent in neon. These results imply that the additional increase of the plasma density due to ionization cannot explain the electron generation. The analysis including the propagation of a laser in ionizing gas would be necessary.