Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 247

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design and beam dynamics studies of a chopper for the JAEA-ADS LEBT

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.205 - 209, 2024/10

The Japan Atomic Energy Agency (JAEA) designs a 30-MW CW proton linear accelerator (linac) as a key component for the accelerator-driven subcritical system (ADS) project, aimed at nuclear waste management. The low energy beam transport (LEBT) in JAEA-ADS uses charge neutralization to minimize space-charge effects, which are the primary cause of beam loss in high-power accelerators. During commissioning and power ramp-up, precise control of the duty cycle is required for safety and machine protection; thus, a chopper system will be installed to manage the beam power. The chopper is located at the LEBT, to facilitate the disposal of the excess beam power, but its operation will affect the charge neutralization producing beam transients that could lead to beam loss. To shed light on this, we created a beam optics model for the chopper using an analytic approach to determine the required characteristics like voltage and dimensions, which was confirmed through TraceWin simulations. Subsequently, we analyzed the chopper's impact on space-charge compensation to evaluate the beam transients in the LEBT. This study reports the design of the chopper and its effects on beam performance for the JAEA-ADS LEBT.

Journal Articles

Beam transient studies for the JAEA-ADS LEBT

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 32nd Linear Accelerator Conference (LINAC 2024) (Internet), p.488 - 491, 2024/10

The Japan Atomic Energy Agency (JAEA) is designing a 30-MW CW proton linear accelerator (linac) for nuclear waste transmutation. Space-charge is the primary challenge in achieving low losses and high beam quality for high-power accelerators, especially at low energy levels where space-charge forces are greater. To counteract the space-charge effects, the low-energy beam transport (LEBT) uses a magnetostatic design to enable the neutralization of the beam charge, the so-called space charge compensation. The neutralization is an accumulation process that reaches a charge balance between the main beam and the opposite ionized particles. However, this equilibrium is destroyed by the chopper system used during beam ramping. During those transient regimes, the beam optics conditions are not optimal for the beam, producing considerable degradation that can end in serious damage to the accelerator. Thus, analysis of beam behavior at these periods is essential to develop a robust design and an efficient operation of the JAEA-ADS linac. This study presents the beam dynamics of neutralization build-up and chopper operation for the JAEA-ADS LEBT.

Journal Articles

Progress of the spoke cavity prototyping for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Domae, Takeshi*

Proceedings of 32nd Linear Accelerator Conference (LINAC 2024) (Internet), p.496 - 498, 2024/10

Journal Articles

Onset of collectivity for argon isotopes close to $$N=32$$

Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; G$'o$mez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.

Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03

 Times Cited Count:1 Percentile:63.95(Physics, Nuclear)

no abstracts in English

Journal Articles

Fabrication progress of the prototype spoke cavity for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Domae, Takeshi*

Journal of Physics; Conference Series, 2687(5), p.052008_1 - 052008_6, 2024/01

 Times Cited Count:0 Percentile:0.00(Physics, Atomic, Molecular & Chemical)

Journal Articles

The Role of collision ionization of K-shell ions in nonequilibrium plasmas produced by the action of super strong, ultrashort PW-class laser pulses on micron-scale argon clusters with intensity up to 5 $$times$$ 10$$^{21}$$ W/cm$$^{2}$$

Skobelev, I. Yu.*; Ryazantsev, S. N.*; Kulikov, R. K.*; Sedov, M. V.*; Filippov, E. D.*; Pikuz, S. A.*; Asai, Takafumi*; Kanasaki, Masato*; Yamauchi, Tomoya*; Jinno, Satoshi; et al.

Photonics (Internet), 10(11), p.1250_1 - 1250_11, 2023/11

 Times Cited Count:1 Percentile:19.28(Optics)

It is challenging to clearly distinguish the impacts of the optical field and collisional ionization in the evolution of the charge state of a plasma produced when matter interacts with high-intensity laser pulses. In this work, time-dependent calculations of plasma kinetics are used to show that it is possible only when low-density gaseous targets with sufficiently small clusters are used. In the case of Ar plasma, the upper limit of the cluster radius was estimated to be $$R_0 = 0.1 mu$$m.

Journal Articles

Validation of the $$^{10}$$Be ground-state molecular structure using $$^{10}$$Be($$p,palpha$$)$$^{6}$$He triple differential reaction cross-section measurements

Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi$'e$, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.

Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11

 Times Cited Count:18 Percentile:91.30(Physics, Multidisciplinary)

The cluster structure of the neutron-rich isotope $$^{10}$$Be has been probed via the ($$p,palpha$$) reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-R$"o$pke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the $$^{10}$$Be ground-state as a rather compact nuclear molecule.

Journal Articles

Design of the Low energy beam transport line for the JAEA-ADS linac

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.545 - 549, 2023/11

The Japan Atomic Energy Agency (JAEA) is proposing a 30-MW proton linear accelerator (linac) for the application of accelerator-driven subcritical system (ADS) technology to achieve nuclear waste transmutation. A major challenge for the JAEA-ADS linac is the efficient transport of a 35 keV proton beam from the ion source to the radio-frequency quadrupole. In order to achieve this goal, we have optimized a magnetostatic low energy beam transport (LEBT) consisting of two solenoids to reduce the transmission of high-charge ions generated by the source and minimize the growth of proton emittance, while taking into account various space-charge compensation scenarios. In this report, we present the optical design and discuss the multiparticle tracking results of the JAEA-ADS LEBT.

Journal Articles

First observation of $$^{28}$$O

Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.

Nature, 620(7976), p.965 - 970, 2023/08

 Times Cited Count:24 Percentile:95.07(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Level structures of $$^{56,58}$$Ca cast doubt on a doubly magic $$^{60}$$Ca

Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.

Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08

 Times Cited Count:7 Percentile:83.07(Astronomy & Astrophysics)

Gamma decays were observed in $$^{56}$$Ca and $$^{58}$$Ca following quasi-free one-proton knockout reactions from $$^{57,59}$$Sc. For $$^{56}$$Ca, a $$gamma$$ ray transition was measured to be 1456(12) keV, while for $$^{58}$$Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the $$2^{+}_{1} rightarrow 0^{+}_{gs}$$ decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for $$2^{+}_{1}$$ level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the $$0_{f5/2}$$ and $$0_{g9/2}$$ orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic $$^{60}$$Ca and potentially drives the dripline of Ca isotopes to $$^{70}$$Ca or even beyond.

Journal Articles

Intruder configurations in $$^{29}$$Ne at the transition into the island of inversion; Detailed structure study of $$^{28}$$Ne

Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.

Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08

 Times Cited Count:4 Percentile:62.61(Astronomy & Astrophysics)

Detailed $$gamma$$-ray spectroscopy of the exotic neon isotope $$^{28}$$Ne has been performed using the one-neutron removal reaction from $$^{29}$$Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for $$^{28}$$Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.

Journal Articles

Design and optimization of a proton source extraction system for the JAEA-ADS linac

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 14th International Particle Accelerator Conference (IPAC 23) (Internet), p.1591 - 1593, 2023/05

The Japan Atomic Energy Agency (JAEA) is designing a 30 MW continuous wave (cw) superconducting proton linear accelerator (linac) for the Accelerator Driven System (ADS) proposal. The JAEA-ADS linacs ion source must provide a proton beam over 20 mA with an energy of 35 keV and a normalized rms emittance of less than 0.1 $$pi$$ mm mrad. As the extraction system determines the beam properties and quality, systematic optimizations on the geometry and input values of the extraction system design were conducted using the AXCEL-INP 2-D simulation program to satisfy the goal requirements. This work describes the extraction system design and reports the beam dynamics results of the first study for the proton source of the JAEA-ADS linac.

Journal Articles

Investigation of niobium surface roughness and hydrogen content with different polishing conditions for performance recovery of superconducting QWRs in JAEA Tokai-Tandem Accelerator

Kamiya, Junichiro; Nii, Keisuke*; Kabumoto, Hiroshi; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; Matsuda, Makoto; Moriya, Katsuhiro; Ida, Yoshiaki*; et al.

e-Journal of Surface Science and Nanotechnology (Internet), 21(4), p.344 - 349, 2023/05

no abstracts in English

Journal Articles

Measurement of H$$^{0}$$ particles generated by residual gas stripping in the Japan Proton Accelerator Research Complex linac

Tamura, Jun; Futatsukawa, Kenta*; Kondo, Yasuhiro; Liu, Y.*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Okabe, Kota; Yoshimoto, Masahiro

Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04

 Times Cited Count:2 Percentile:49.11(Instruments & Instrumentation)

The Japan Proton Accelerator Research Complex (J-PARC) linac is a high-intensity accelerator in which beam loss is a critical issue. In the J-PARC linac, H$$^{-}$$ beams are accelerated to 191~MeV by a separated drift tube linac (SDTL) and subsequently to 400~MeV by an annular-ring coupled structure (ACS). Because there are more beam loss mechanisms in H$$^{-}$$ linacs than in proton linacs, it is imperative to investigate the beam loss circumstances for beam loss mitigation. Electron-stripping phenomena, which generate uncontrollable H$$^{0}$$ particles, are characteristic beam loss factors of H$$^{-}$$ linacs. To clarify the beam loss causes in the J-PARC linac, a new diagnostic line was installed in the beam transport between the SDTL and ACS. In this diagnostic line, H$$^{0}$$ particles were separated from the H$$^{-}$$ beam, and the intensity profiles of the H$$^{0}$$ particles were successfully measured by horizontally scanning a graphite plate in the range where H$$^{0}$$ particles were distributed. By examining the intensity variation of the H$$^{0}$$ particles with different residual pressure levels, we proved that half of the H$$^{0}$$ particles in the SDTL section are generated by the residual gas stripping in the nominal beam operation of the J-PARC linac.

Journal Articles

Multiple mechanisms in proton-induced nucleon removal at $$sim$$100 MeV/nucleon

Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; G$'o$mez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.

Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04

 Times Cited Count:12 Percentile:87.89(Physics, Multidisciplinary)

We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient $$^{14}$$O nucleus with large Fermi-surface asymmetry at $$sim$$100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.

Journal Articles

Investigation of the oxidation behavior of Zircaloy-4 cladding in a mixture of air and steam

Nemoto, Yoshiyuki; Ishijima, Yasuhiro; Kondo, Keietsu; Fujimura, Yuki; Kaji, Yoshiyuki

Journal of Nuclear Materials, 575, p.154209_1 - 154209_19, 2023/03

 Times Cited Count:5 Percentile:63.07(Materials Science, Multidisciplinary)

Previous studies had shown that in certain conditions, the rate of oxidation of zirconium (Zr) based alloy fuel cladding is higher in air-steam mixtures than in dry air. In severe accidents in the spent fuel pool and in other air ingress accidents in nuclear power plants, the cladding is likely to be oxidized in an air-steam mixture, which makes it crucial to have an in-depth understanding of the nature of oxidation and its kinetics in that environment. Oxidation tests were conducted at 800$$^{circ}$$C on Zircaloy-4 specimens in a mix of (air+steam) with various component ratios. Oxidation kinetics, details of the oxide layer, and hydrogen pick-up in the specimen were studied to investigate the mechanism of oxidation in each of these sets of conditions. Zirconium nitride precipitation in the oxide layer during the initial stages of the pre-breakaway oxidation stage and the widespread porous oxide growth on the cladding surface in the latter post-BA oxidation stage are related to the oxidation mechanism in the air-steam mixture. The differences in the mechanism of oxidation of the cladding in dry air and air-steam mixtures are discussed based on the experimental results.

Journal Articles

Measurement of the longitudinal bunch-shape distribution for a high-intensity negative hydrogen ion beam in the low-energy region

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Oguri, Hidetomo

Physical Review Accelerators and Beams (Internet), 26(3), p.032802_1 - 032802_12, 2023/03

 Times Cited Count:3 Percentile:48.20(Physics, Nuclear)

A bunch-shape monitor (BSM) is a useful device for performing longitudinal beam tuning using the pointwise longitudinal phase distribution measured at selected points in the beam transportation. To measure the longitudinal phase distribution of a low-energy negative hydrogen (H$$^{-}$$) ion beam, highly oriented pyrolytic graphite (HOPG) was adopted for the secondary-electron-emission target to mitigate the thermal damage due to the high-intensity beam loading. The HOPG target enabled the measurement of the longitudinal phase distribution at the center of a 3-MeV H$$^{-}$$ ion beam with a high peak current of about 50 mA. The longitudinal bunch width was measured using HOPG-BSM at the test stand, which was consistent with the beam simulation. The correlation measurement between the beam transverse and longitudinal planes was demonstrated using HOPG-BSM. The longitudinal Twiss and emittance measurement with the longitudinal Q-scan method was conducted using HOPG-BSM.

Journal Articles

Reports of electro-polishing implementation for quarter-wave resonators, 2

Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.601 - 604, 2023/01

no abstracts in English

Journal Articles

Availability analysis for the 30-MW proton linac of the JAEA-ADS project

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.286 - 290, 2023/01

Japan Atomic Energy Agency (JAEA) is designing a 30-MW proton linear accelerator (linac) as one of the fundamental components for its accelerator-driven subcritical system (ADS) project. ADS accelerators demand extremely high reliability and availability to avoid thermal stress in the subcritical reactor structures. Thus, reliability and availability assessments of the accelerator are mandatory to detect weakness in the lattice designed and evaluate redundancy configurations to fulfill the demanded operation. This study applied the Reliability Block Diagrams (RBD) method to calculate the Medium Time Between Failures (MTBF) for different linac configurations: all the linac's elements in a series configuration and a combination of hot-standby for the low-energy section of the linac and k-out-n redundancy for the high-energy part. The estimation considered the detailed arrangement of the cavities and magnets that compose the linac lattice. In this report, we describe the reliability model of the JAEA-ADS linac, report the MTBF results, and point out the potential route toward operating with the required availability.

Journal Articles

Design and beam dynamics studies of an ADS RFQ based on an equipartitioned beam scheme

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro; Jameson, R. A.*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.499 - 502, 2023/01

The Japan Atomic Energy Agency (JAEA) is designing a 30-MW proton linear accelerator (linac) for the accelerator-driven subcritical system (ADS). The Radio Frequency Quadrupole (RFQ) is an essential component for the performance of high-intensity linac, especially in ADS, where stringent reliability is demanded. The present RFQ will capture a 20 mA proton beam and accelerate from the energy of 35 keV to 2.5 MeV, where the space-charge effects are severe. The present RFQ's design employs the equipartitioning (EP) beam scheme to control the emittance growth and compactness. As a result, the beam halo formation was minimized and allowed to optimize the superconducting linac downstream part. A remarkable feature of this RFQ is the low Kilpatrick factor of 1.2 adopted to achieve high stability by reducing the probability of surface sparking on the vane. This work presents and discusses the results of this RFQ design.

247 (Records 1-20 displayed on this page)