Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tada, Kenichi; Yamamoto, Akio*; Kunieda, Satoshi; Konno, Chikara; Kondo, Ryoichi; Endo, Tomohiro*; Chiba, Go*; Ono, Michitaka*; Tojo, Masayuki*
Journal of Nuclear Science and Technology, 61(6), p.830 - 839, 2024/06
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Nuclear data processing code is important to connect evaluated nuclear data libraries and radiation transport codes. The nuclear data processing code FRENDY version 1 was released in 2019 to generate ACE formatted cross section files with simple input data. After we released FRENDY version 1, many functions were developed, e.g., neutron multi-group cross section generation, explicit consideration of the resonance interference effect among different nuclides in a material, consideration of the resonance upscattering, ACE file perturbation, and modification of ENDF-6 formatted file. FRENDY version 2 was released including these new functions. It generates GENDF and MATXS formatted neutron multi-group cross section files from an ACE formatted cross section file or an evaluated nuclear data file. This paper explains the features of the new functions implemented in FRENDY version 2 and the verification of the neutron multigroup cross section generation function of this code.
Konno, Chikara; Kochiyama, Mami; Hayashi, Hirokazu
Mechanical Engineering Journal (Internet), 11(2), p.23-00386_1 - 23-00386_11, 2024/04
Activation cross-section libraries for the ORIGEN and ORIGEN-S codes have been generated from JENDL-5 and JENDL/AD-2017. The ORIGEN activation cross-section libraries of the 200 and 48 group structures were generated with the AMPX-6 code, while the ORIGEN-S activation cross-section libraries with a MAXS format of the 199 group structure were done with the PREPO2018 code. Activation calculations for JPDR were carried out in order to validate the produced ORIGEN and ORIGEN-S activation cross-section libraries. The following comparisons were performed: the ORIGEN calculation results with the produced activation cross-section libraries and bundled ones, the 200 group and 48 group ORIGEN calculations, the ORIGEN and ORIGEN-S calculations with the JENDL-5 activation cross-section libraries, etc. Most of the differences of the calculation results were less than 20%, which demonstrated that the libraries were produced adequately.
Konno, Chikara
JAEA-Conf 2023-001, p.143 - 146, 2024/02
I modified NJOY2016.67 to produce photonuclear ACE files which can be used in MCNP6.2 and PHITS3.27 and produced the ACE file of the JENDL-5 photonuclear sub-library. Simple test calculations with the produced ACE file supported that the produced ACE file had no serious problems.
Schnabel, G.*; Kunieda, Satoshi; Konno, Chikara; Nakayama, Shinsuke; 27 of others*
Nuclear Data Sheets, 193, p.1 - 78, 2024/02
Times Cited Count:1 Percentile:94.19Fusion Evaluated Nuclear Data Library (FENDL), which has been coordinated by International Atomic Energy Agency (IAEA), was updated for the neutronics analysis on the fusion reactors and related applications. The main sources of data files are the national nuclear data libraries such as ENDF, JEFF and JENDL, where the best data was selected for each isotope through comparisons of the evaluated cross-sections and a number of benchmark analyses. Large differences from the previous library (FENDL-2.1) are extension of the upper energy limit from 20 MeV to 200 MeV and inclusion of the charged-particle reaction data, which had been requested by accelerator-based studies on structural materials for the fusion reactors. This paper gives a comprehensive description on the latest version FENDL-3.2b. A number of validations on the neutronics analysis show that the performance of FENDL-3.2b is better than FENDL-2.1.
Konno, Chikara
Journal of Nuclear Science and Technology, 61(1), p.121 - 126, 2024/01
Times Cited Count:1 Percentile:63.33(Nuclear Science & Technology)The JENDL-4.0/HE neutron and proton ACE files were produced in 2017 and those of 22 nuclei for neutron and 25 nuclei for proton were bundled in the PHITS code. Recently it was found that the following five data in the JENDL-4.0/HE neutron and proton ACE files had any problems; ACE files for N and O, heating numbers, damage energy production cross sections, secondary neutron multiplicities and fission cross sections. Thus new JENDL-4.0/HE neutron and proton ACE files were produced with the problems fixed. This paper describes the problems and how to produce the new neutron and proton ACE files in detail.
Konno, Chikara; Ota, Masayuki*; Kwon, Saerom*; Onishi, Seiki*; Yamano, Naoki*; Sato, Satoshi*
Journal of Nuclear Science and Technology, 60(9), p.1046 - 1069, 2023/09
Times Cited Count:5 Percentile:97.88(Nuclear Science & Technology)JENDL-5 was validated from a viewpoint of shielding applications under the Shielding Integral Test Working Group of the JENDL Committee. The following benchmark experiments were selected: JAEA/FNS in-situ experiments, Osaka Univ./OKTAVIAN TOF experiments, ORNL/JASPER sodium experiments, NIST iron experiment and QST/TIARA experiments. These experiments were analyzed with MCNP and nuclear data libraries (JENDL-5, JENDL-4.0 or JENDL-4.0/HE, ENDF/B-VIII.0 and JEFF-3.3). The analysis results demonstrate that JENDL-5 is comparable to or better than JENDL-4.0 or JENDL-4.0/HE, ENDF/B-VIII.0 and JEFF-3.3.
Konno, Chikara; Kwon, Saerom*
EPJ Web of Conferences, 284, p.15010_1 - 15010_4, 2023/05
Times Cited Count:0 Percentile:0.21(Nuclear Science & Technology)For the JENDL development we analyzed the iron in-situ experiment at the DT neutron source facility FNS in JAEA with the two-dimensional Sn code DORT and the latest nuclear data libraries: JENDL-4.0, ENDF/B-VIII.0 and JEFF-3.3. As a result, we found that the result with ENDF/B-VIII.0 reproduced the measured data worse than those with JENDL-4.0 and JEFF-3.3 as follows: overestimation of neutron flux below a few keV, underestimation of the reaction rate of In(n,n')In sensitive to neutrons above 0.3 MeV and underestimation of neutron flux above 10 MeV. Our detailed study specified that the inelastic scattering cross section of Fe-56 in ENDF/B-VIII.0 mainly caused the overestimation of neutron flux below a few keV and underestimation of the reaction rate of In(n,n')In and that the angular distribution data of the elastic scattering and the cross section of the (n,2n) reaction of Fe in ENDF/B-VIII.0 were the reason of the underestimation of neutron flux above 10 MeV.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Nagaya, Yasunobu; Tada, Kenichi; et al.
EPJ Web of Conferences, 284, p.14001_1 - 14001_7, 2023/05
Times Cited Count:0 Percentile:0.21(Nuclear Science & Technology)Konno, Chikara; Kochiyama, Mami; Hayashi, Hirokazu
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
JENDL-5 released in 2021 includes enough cross section data for neutron activation calculations. Thus we have produced ORIGEN and ORIGEN-S libraries from JENDL 5. We also produced the similar libraries from JENDL/AD-2017 for comparison. Analyses of the JPDR decommissioning data with these libraries demonstrated that the libraries had no problem.
Kunieda, Satoshi; Yamamoto, Kazuyoshi; Konno, Chikara; Iwamoto, Yosuke; Iwamoto, Osamu; Wakabayashi, Yasuo*; Ikeda, Yujiro*
Journal of Neutron Research, 24(3-4), p.329 - 335, 2023/01
We have evaluated double-differential cross-sections (DDX) of the Be(p,xn) reaction based on the function proposed by Wakabayashi et al. up to 12 MeV. Through compilation in the ENDF-6 format file, data processing, and neutronics analysis with MC simulation codes MCNP and PHITS to thick target yield (TTY) measurements, the function was re-confirmed to give more reasonable DDX data than those in our previous library JENDL-4.0/HE and ENDF/B-VIII.0. We finally decided to reduce the absolute cross-sections by 15% for our new nuclear data library JENDL-5 since the prediction ability of neutronics simulation was much better than that based on the original function. Through comprehensive comparisons of the simulation results on TTY at different proton energies and neutron emission angles, we conclude that JENDL-5 gives the best estimation in the world.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Abe, Yutaka*; Tsubakihara, Kosuke*; Okumura, Shin*; Ishizuka, Chikako*; Yoshida, Tadashi*; et al.
Journal of Nuclear Science and Technology, 60(1), p.1 - 60, 2023/01
Times Cited Count:75 Percentile:99.99(Nuclear Science & Technology)Konno, Chikara; Kwon, Saerom*
JAEA-Conf 2022-001, p.123 - 128, 2022/11
We found that a lot of nuclei in TENDL-2019 had no high-energy gamma peaks in secondary gamma spectra from the capture reaction and several nuclei in JEFF-3.3 also have. This problem causes not only drastically small damage energy production cross sections for radiation damage calculations at incident neutron energies below a few keV but also smaller gamma productions in shielding calculations. The problematic energy distribution data for secondary gammas in TENDL-2019 and JEFF-3.3 should be revised.
Konno, Chikara; Tada, Kenichi; Kwon, Saerom*
Proceedings of 14th International Conference on Radiation Shielding and 21st Topical Meeting of the Radiation Protection and Shielding Division (ICRS-14/RPSD 2022) (Internet), p.440 - 443, 2022/11
Neutron spectra inside a sphere of 1 m in radius, made of one natural isotope with unresolved resonance data, with an isotropic neutron source of 20 MeV at the center were calculated with the ANISN code and JENDL-4.0 MATXS file MATXSLIB-J40. Then unphysical neutron spectra produced in unresolved resonance data processing with the NJOY code were obtained. We examined its reasons and specified that unrealistic cross sections in dips between resonances caused the unphysical neutron spectra. We also demonstrated that this problem was solved by modifying NJOY.
Kwon, Saerom*; Konno, Chikara; Ota, Masayuki*; Sato, Satoshi*
Annals of Nuclear Energy, 169, p.108932_1 - 108932_7, 2022/05
Times Cited Count:2 Percentile:48.47(Nuclear Science & Technology)Recently, it was reported that one of three ENDF files of Be-9 in the TENDL-2017 alpha sub-library included strange neutron production data. Thus we have tested three ENDF files of Be-9 in the TENDL-2017 deuterium sub-library for nuclear designs of a new fusion neutron source A-FNS. As a result, we found out that neutron production cross sections and secondary neutron spectra were different among three ENDF files and specified reasons. We confirmed that the latest TENDL, TENDL-2019, still had some of the issues.
Konno, Chikara; Kochiyama, Mami; Hayashi, Hirokazu
JAEA-Conf 2021-001, p.132 - 137, 2022/03
A SCALE6.2 ORIGEN library was produced with the AMPX-6 code from JENDL Activation Cross Section File for Nuclear Decommissioning 2017 (JENDL/AD-2017). For validation of the libraries, JPDR activation calculation was performed with ORIGEN and the libraries, which demonstrated the library had no problem.
Konno, Chikara
JAEA-Conf 2020-001, p.193 - 197, 2020/12
JENDL Activation Cross Section File for Nuclear Decommissioning 2017 (JENDL/AD-2017) was released in 2018. This file includes the data of neutron-induced nuclear reactions for 311 nuclides from 10 eV to 20 MeV. Thus a multi-group neutron activation cross-section library (MAXS/AD-2017) with the same format as MAXS-2015 by Dr. Okumura has been developed from JENDL/AD-2017 with PREPRO 2018 for activation calculations in nuclear facility decommissioning. MAXS/AD-2017 will be converted to ORIGEN libraries and be tested with the JPDR decommissioning data. Then MAXS/AD-2017 will be released.
Konno, Chikara; Kwon, Saerom*
Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.320 - 325, 2020/10
We found out that p-table data in the FENDL-3.1d ACE file included negative values for 33 nuclei. Thus, we studied why p-tables for heating number included negative. As a result, it was found out that partial KERMA factors became too large because the energy-balance was broken in the 33 nuclei and that FENDL-3.1d adopted kinematics KERMA factors. Then NJOY could not process adequately the 33 nuclei data, which led to negative p-tables for heating number. We prosed two solutions for this issue, produced new ACE files of FENDL-3.1d with the above two methods and confirmed that the new ACE files had no negative p-tables of the heating number.
Matsuda, Norihiro; Konno, Chikara; Ikehara, Tadashi; Okumura, Keisuke; Suyama, Kenya*
JAEA-Data/Code 2020-003, 33 Pages, 2020/03
Data handling modules for the radioactivity calculation code, ORIGEN-S, are developed for the reliable evaluations of radioactivity inventory. By using these modules, an activation cross-section data library for the ORIGEN-S code is updated easily and effectively based on a facility-specific neutron spectrum and multi-group neutron activation cross-section library for decommissioning of nuclear facilities, MAXS2015. In order to guarantee the reliability of the radioactivity calculations, functions of data verification in a visual way and numerical comparison between before and after the data processing are also prepared.
Kwon, Saerom*; Konno, Chikara; Ota, Masayuki*; Kasugai, Atsushi*
Journal of Nuclear Science and Technology, 57(3), p.344 - 351, 2020/03
Times Cited Count:1 Percentile:10.65(Nuclear Science & Technology)We found out that there was a questionable iron DPA value just above 20 MeV neutron energy in neutronics analyses of A-FNS using FENDL-3.1d. Our detailed investigation on the iron data in FENDL-3.1d figured out that residual nucleus production yield data of Fe just above 20 MeV had a problem, which caused a sharp spike just above 20 MeV in the DPA cross section of Fe. Thus we modified the yield data of Fe and verified that the questionable DPA value disappeared using the modified data. We also examined DPA cross sections of other nuclei in FENDL-3.1d. It was found out that DPA cross sections of more than 70% of nuclei in FENDL-3.1d have similar problems as that of Fe.
Trkov, A.*; Griffin, P. J.*; Simakov, S. P.*; Greenwood, L. R.*; Zolotarev, K. I.*; Capote, R.*; Aldama, D. L.*; Chechev, V.*; Destouches, C.*; Kahler, A. C.*; et al.
Nuclear Data Sheets, 163, p.1 - 108, 2020/01
Times Cited Count:95 Percentile:99.77(Physics, Nuclear)The version II of the International Reactor Dosimetry and Fusion File (IRDFF-II) has been released as a consistent set of nuclear data for fission and fusion neutron metrology applications up to 60 MeV neutron energy. The library is intended to support: (a) applications in research reactors; (b) safety and regulatory applications in the nuclear power generation in commercial fission reactors; and c) material damage studies in support of the research and development of advanced fusion concepts. The paper describes the contents of the library, documents the thorough verification process used in its preparation, and provides an extensive set of validation data gathered from a wide range of neutron benchmark fields. The new library is expected to become the international reference in neutron metrology for multiple applications.