Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Fast Reactor Cycle Technology Development Project (FaCT Project); A Design study on an engineering-scale hot test facility (Interim report)

Nakamura, Hirofumi; Nagai, Toshihisa; Suto, Toshiyuki; Kosaka, Ichiro; Nakazaki, Katsutoshi; Suto, Shinya; Nakamura, Tomotaka; Nakabayashi, Hiroki; Hayashi, Naoto; Sumida, Daisaku

JAEA-Technology 2008-077, 276 Pages, 2008/12

JAEA-Technology-2008-077.pdf:25.66MB

Japan Atomic Energy Agency (JAEA) has been conducting "Fast Reactor Cycle Technology Development Project (FaCT Project)" for the purposes of researching and developing the technologies for the fast breeder reactor cycle commercialization since Japanese fiscal year (JFY) 2007. Based on the above R&D program for reprocessing system, the engineering-scale hot test would provide demonstration data on the specification, operation and maintenance of the adapted innovative technologies, system and plant. And more, these results would be fed to the design of the demonstration facility planning on the FaCT project road map. This report is the interim report of design studies about the engineering-scale hot test facility and includes not only design of the equipment and facility, but also consideration for design principle, requirements and facility basic planning.

Journal Articles

"Crystal lattice engineering", an approach to engineer protein crystal contacts by creating intermolecular symmetry; Crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines

Yamada, Hidenori*; Tamada, Taro; Kosaka, Megumi*; Miyata, Kohei*; Fujiki, Shinya*; Tano, Masaru*; Moriya, Masayuki*; Yamanishi, Mamoru*; Honjo, Eijiro; Tada, Horiko*; et al.

Protein Science, 16(7), p.1389 - 1397, 2007/07

 Times Cited Count:39 Percentile:59.61(Biochemistry & Molecular Biology)

In an attempt to control protein incorporation in a crystal lattice, a leucine zipper-like hydrophobic interface (comprising four leucine residues) was introduced into a helical region (helix 2) of the human pancreatic ribonuclease 1 (RNase 1) that was predicted to form a suitable crystallization interface. Although crystallization of wild type RNase 1 has not yet been reported, the RNase 1 mutant having four leucines (4L-RNase 1) was successfully crystallized under several different conditions. The crystal structures were subsequently determined by X-ray crystallography by molecular replacement using the structure of bovine RNase A. The overall structure of 4L-RNase 1 is quite similar to that of the bovine RNase A, and the introduced leucine residues formed the designed crystal interface. To further characterize the role of the introduced leucine residues in crystallization of RNase 1, the number of leucines was reduced to three or two (3L- and 2L-RNase 1, respectively). Both mutants crystallized and a similar hydrophobic interface as in 4L-RNase 1 was observed. A related approach to engineer crystal contacts at helix 3 of RNase 1 (N4L-RNase 1) was also evaluated. N4L-RNase 1 also successfully crystallized, and formed the expected hydrophobic packing interface. These results suggest that appropriate introduction of a leucine zipper-like hydrophobic interface can promote intra molecular symmetry for more efficient protein crystallization in crystal lattice engineering efforts.

JAEA Reports

Study on the prediction accuracy of nuclide generation and depletion with JENDL

Okumura, Keisuke; Oki, Shigeo*; Yamamoto, Munenari*; Matsumoto, Hideki*; Ando, Yoshihira*; Tsujimoto, Kazufumi; Sasahara, Akihiro*; Katakura, Junichi; Matsumura, Tetsuo*; Aoyama, Takafumi*; et al.

JAERI-Research 2004-025, 154 Pages, 2005/01

JAERI-Research-2004-025.pdf:19.46MB

This report summarizes the activity (FY2000-2003) of Working Group (WG) on Evaluation of Nuclide Generation and Depletion under Subcommittee on Nuclear Fuel Cycle of Japanese Nuclear Data Committee. In the WG, analyses of Post Irradiation Examinations have been carried out for UO$$_{2}$$ and MOX fuels irradiated in PWRs, BWRs and FBRs, and for actinide samples irradiated in fast reactors, by using ORIGEN or more detailed calculation codes with their libraries based on JENDL-3.2, JENDL-3.3 and other foreign nuclear data files. From these results, current prediction accuracy and problems for evaluation of nuclide generation and depletion are discussed. Furthermore, this report covers other products of our activity; development of the ORIGEN libraries for PWR, BWR and FBR based on JENDL-3.3, study on introduction of neutron spectrum index to ORIGEN calculations, and results of questionnaire survey on desirable accuracy of ORIGEN calculations.

Oral presentation

Oral presentation

The Feasibility study on SiC composite fuel cladding for the Accident Tolerant Fuel to the existing PWR plants, 4; Evaluations of severe accident tolerance for SiC

Yamakoshi, Yoshinori*; Kirimura, Kazuki*; Kosaka, Shinya*; Yamashita, Shinichiro

no journal, , 

Accident tolerant of SiC under severe accident condition was evaluated on the assumption that SiC fuel cladding was implemented to existing PWR plant.

5 (Records 1-5 displayed on this page)
  • 1