Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Koga, J. K.; Mori, Michiaki; Kotaki, Hideyuki; Bulanov, S. V.; Esirkepov, T. Z.; Kiriyama, Hiromitsu; Kando, Masaki
AIP Conference Proceedings 1721, p.050003_1 - 050003_8, 2016/03
Oks, E.*; Dalimier, E.*; Faenov, A.*; Pikuz, T.*; Fukuda, Yuji; Andreev, A.*; Koga, J. K.; Sakaki, Hironao; Kotaki, Hideyuki; Pirozhkov, A. S.; et al.
Optics Express (Internet), 23(25), p.31991 - 32005, 2015/12
Times Cited Count:8 Percentile:36.86(Optics)We present experiments dealing with a femtosecond laser-driven cluster-based plasma, where by analyzing the nonlinear phenomenon of satellites of spectral lines of Ar XVII, we revealed the nonlinear phenomenon of the generation of the second harmonic of the laser frequency. For performing this analysis we developed new results in the theory of satellites of spectral lines. From such lineshape analysis we found, in particular, that the efficiency of converting the short (40 fs) intense (310
W/cm
) incident laser light into the second harmonic was 2%. This result is in the excellent agreement with the 2-Dimensional Particle-In-Cell (2D PIC) simulation that we also performed. There is also an order of magnitude agreement between the thresholds for the SHG found from the line shape analysis and from the 2D PIC simulations.
Kotaki, Hideyuki; Kawase, Keigo*; Hayashi, Yukio; Mori, Michiaki; Kando, Masaki; Koga, J. K.; Bulanov, S. V.
Journal of the Physical Society of Japan, 84(7), p.074501_1 - 074501_5, 2015/07
Times Cited Count:7 Percentile:47.56(Physics, Multidisciplinary)Kiriyama, Hiromitsu; Mori, Michiaki; Pirozhkov, A. S.; Ogura, Koichi; Sagisaka, Akito; Kon, Akira; Esirkepov, T. Z.; Hayashi, Yukio; Kotaki, Hideyuki; Kanasaki, Masato*; et al.
IEEE Journal of Selected Topics in Quantum Electronics, 21(1), p.1601118_1 - 1601118_18, 2015/01
Times Cited Count:66 Percentile:95.17(Engineering, Electrical & Electronic)This paper reviews the development of a high-contrast high-intensity petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser for research on high field science. We discuss in detail the design, performance and characterization of the laser. We also describe the on-going upgrade of the laser system and some applications for the laser in relativistic dominated laser-matter interactions.
Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Faenov, A. Y.*; Pikuz, T. A.*; Kawachi, Tetsuya; Sagisaka, Akito; Koga, J. K.; Mori, Michiaki; Kawase, Keigo*; et al.
RAL-TR-2015-025, P. 22, 2015/00
Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Gallegos, P.*; Ahmed, H.*; Ragozin, E. N.*; Faenov, A. Ya.*; Pikuz, T. A.*; Kawachi, Tetsuya; Sagisaka, Akito; et al.
New Journal of Physics (Internet), 16(9), p.093003_1 - 093003_30, 2014/09
Times Cited Count:31 Percentile:80.38(Physics, Multidisciplinary)Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.
Reza Kenkyu, 42(6), p.441 - 447, 2014/06
We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.
Esirkepov, T. Z.; Koga, J. K.; Sunahara, Atsushi*; Morita, Toshimasa; Nishikino, Masaharu; Kageyama, Kei*; Nagatomo, Hideo*; Nishihara, Katsunobu; Sagisaka, Akito; Kotaki, Hideyuki; et al.
Nuclear Instruments and Methods in Physics Research A, 745, p.150 - 163, 2014/05
Times Cited Count:46 Percentile:95.66(Instruments & Instrumentation)Kiriyama, Hiromitsu; Mori, Michiaki; Okada, Hajime; Shimomura, Takuya; Nakai, Yoshiki*; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Yogo, Akifumi; Sagisaka, Akito; et al.
JPS Conference Proceedings (Internet), 1, p.015095_1 - 015095_5, 2014/03
We present the design and characterization of a high-contrast, petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser system. Two saturable absorbers and low-gain optical parametric chirped-pulse amplification (OPCPA) preamplifier in the double CPA laser chain have improved the temporal contrast to 1.410
on the subnanosecond time scale at 70 terawatt level. Final uncompressed broadband pulse energy is 28 J, indicating the potential for reaching peak power near 600 terawatt. We also discuss our upgrade to over petawatt level at a 0.1 Hz repetition rate briefly.
Mori, Michiaki; Kando, Masaki; Kotaki, Hideyuki; Hayashi, Yukio; Kiriyama, Hiromitsu; Okada, Hajime; Pirozhkov, A. S.; Bulanov, S. V.; Kondo, Kiminori; Bolton, P.
JPS Conference Proceedings (Internet), 1, p.015094_1 - 015094_6, 2014/03
We report on the appropriate and inappropriate gas materials to generate energetic electrons. The 4-TW peak power and 40-fs pulse duration laser beam illuminated the gas-jet target with intensity of 910
W/cm
measured in vacuum. We investigated energetic electron beam generation using neon and argon. Energetic electron beam was observed in argon at the lowest neutral gas density of 5
10
cm
. However, no energetic electrons (
1 MeV,
1 pC) were observed in neon although neutral gas density is increased from5
10
cm
to 5
10
cm
. By considering ionization stage at such an intensity, the maximum plasma density is reached to be a quarter critical plasma density, at which the maximum growth-rate of laser-plasma instability is expected. On the other hand, propagation of the pumping laser was observed in neon and argon by using optical probing. Significantly different images were observed. The structure of the laser channel for energetic electron beam generation that observed in argon was absent in neon. These results imply that the additional increase of the plasma density due to ionization cannot explain the electron generation. The analysis including the propagation of a laser in ionizing gas would be necessary.
Hayashi, Yukio; Pirozhkov, A. S.; Kando, Masaki; Ogura, Koichi; Kotaki, Hideyuki; Kiriyama, Hiromitsu; Okada, Hajime; Goto, Hideki*; Nishikawa, Tadashi*
Laser and Particle Beams, 31(3), p.419 - 425, 2013/09
Times Cited Count:1 Percentile:4.41(Physics, Applied)To increase X-ray photon number generated by laser-cluster interaction, it is important to understand the dependence of X-ray generation on cluster size. We carried out Xe K-shell X-ray generation using a conical nozzle with Xe clusters, the radius of which was controllable by adjusting the backing pressure. The experiment clarifies the result that the Xe K-shell X-ray photon number increases with increasing cluster radius from 8 to 12 nm, and saturates at the radius between 12 and 17 nm. We also investigated the Xe K-shell X-ray photon number dependence on laser intensity, and found that the threshold laser intensity of the Xe K-shell X-ray generation exists between 210
and 5
10
W/cm
.
Giulietti, A.*; Andr, A.*; Dobosz-Dufr
noy, S.*; Giulietti, D.*; Hosokai, Tomonao*; Koester, P.*; Kotaki, Hideyuki; Labate, L.*; Levato, T.*; Nuter, R.*; et al.
Physics of Plasmas, 20(8), p.082307_1 - 082307_6, 2013/08
Times Cited Count:9 Percentile:35.48(Physics, Fluids & Plasmas)Kiriyama, Hiromitsu; Shimomura, Takuya; Mori, Michiaki; Nakai, Yoshiki*; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Pirozhkov, A. S.; Esirkepov, T. Z.; Hayashi, Yukio; et al.
Applied Sciences (Internet), 3(1), p.214 - 250, 2013/03
Times Cited Count:15 Percentile:47.32(Chemistry, Multidisciplinary)This paper reviews techniques for improving the temporal contrast and spatial beam quality in an ultra-intense laser system that is based on chirped-pulse amplification (CPA). We describe the design, performance, and characterization of our laser system, which has the potential for achieving a peak power of 600 TW. We also describe applications of the laser system in the relativistically dominant regime of laser-matter interactions and discuss a compact, high efficiency diode-pumped laser system.
Mizuta, Yoshio*; Hosokai, Tomonao*; Masuda, Shinichi*; Zhidkov, A.*; Makito, Keigo*; Nakanii, Nobuhiko*; Kajino, Shohei*; Nishida, Akinori*; Kando, Masaki; Mori, Michiaki; et al.
Physical Review Special Topics; Accelerators and Beams, 15(12), p.121301_1 - 121301_10, 2012/12
Times Cited Count:21 Percentile:71.00(Physics, Nuclear)Kotaki, Hideyuki; Mori, Michiaki; Hayashi, Yukio; Kando, Masaki; Daito, Izuru; Fukuda, Yuji; Pirozhkov, A. S.; Koga, J. K.; Bulanov, S. V.
Problems of Atomic Science and Technology, (82), p.134 - 138, 2012/12
Kotaki, Hideyuki
Reza Kenkyu, 40(11), p.814 - 818, 2012/11
no abstracts in English
Faenov, A. Ya.*; Skobelev, I. Yu.*; Pikuz, T.; Pikuz, S. A.*; Fortov, V. E.*; Fukuda, Yuji; Hayashi, Yukio; Pirozhkov, A. S.; Kotaki, Hideyuki; Shimomura, Takuya; et al.
Laser and Particle Beams, 30(3), p.481 - 488, 2012/09
Times Cited Count:11 Percentile:42.09(Physics, Applied)Bulanov, S. V.; Esirkepov, T. Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, J. K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, A. S.; Bulanov, S. S.*; et al.
AIP Conference Proceedings 1465, p.87 - 96, 2012/07
Times Cited Count:1 Percentile:45.57(Physics, Applied)Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Gallegos, P.*; Ahmed, H.*; Ragozin, E. N.*; Faenov, A. Ya.*; Pikuz, T.; Kawachi, Tetsuya; Sagisaka, Akito; et al.
AIP Conference Proceedings 1465, p.167 - 171, 2012/07
Times Cited Count:1 Percentile:45.57(Physics, Applied)Kando, Masaki; Pirozhkov, A. S.; Nakamura, Tatsufumi; Hayashi, Yukio; Kotaki, Hideyuki; Kawase, Keigo*; Esirkepov, T. Z.; Fukuda, Yuji; Kiriyama, Hiromitsu; Okada, Hajime; et al.
AIP Conference Proceedings 1465, p.159 - 166, 2012/07
Times Cited Count:0 Percentile:0.00(Physics, Applied)