Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 52

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08

 Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)

Journal Articles

Homogeneity of neutron transmission imaging over a large sensitive area with a four-channel superconducting detector

Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01

 Times Cited Count:2 Percentile:72.02(Physics, Applied)

Journal Articles

Kinetic inductance neutron detector operated at near critical temperature

Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07

 Times Cited Count:0 Percentile:0.01

Journal Articles

Temperature dependent characteristics of neutron signals from a current-biased Nb nanowire detector with $$^{10}$$B converter

Vu, TheDang; Iizawa, Yuki*; Nishimura, Kazuma*; Shishido, Hiroaki*; Kojima, Kenji*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; et al.

Journal of Physics; Conference Series, 1293, p.012051_1 - 012051_9, 2019/10

 Times Cited Count:4 Percentile:97.68

Journal Articles

Enhancement of element production by incomplete fusion reaction with weakly bound deuteron

Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.

Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07

 Times Cited Count:5 Percentile:62.37(Physics, Multidisciplinary)

Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for $$^{107}$$Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.

Journal Articles

Coolability evaluation of debris bed on core catcher in a sodium-cooled fast reactor

Matsuo, Eiji*; Sasa, Kyohei*; Koyama, Kazuya*; Yamano, Hidemasa; Kubo, Shigenobu; Hourcade, E.*; Bertrand, F.*; Marie, N.*; Bachrata, A.*; Dirat, J. F.*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Discharged molten-fuel from the core during Core Disruptive Accident (CDA) could become solidified particle debris by fuel-coolant interaction in the lower sodium plenum, and then the debris could form a bed on a core catcher located at the bottom of the reactor vessel. Coolability evaluations for the debris bed are necessary for the design of the core catcher. The purpose of this study is to evaluate the coolability of the debris bed on the core catcher for the ASTRID design. For this purpose, as a first step, the coolability calculations of the debris beds formed both in short term and later phase have been performed by modeling only the debris bed itself. Thus, details of core catcher design and decay heat removal system are not described in this paper. In all the calculations, coolant temperature around the debris bed is a parameter. The calculation tool is the debris bed module implemented into a one-dimensional plant dynamics code, Super-COPD. The evaluations have shown that the debris beds formed both in short term and later phase are coolable by the design which secures sufficient coolant flow around the core catcher located in the cold pool.

Journal Articles

SAS4A analysis study on the initiating phase of ATWS events for generation-IV loop-type SFR

Kubota, Ryuzaburo; Koyama, Kazuya*; Moriwaki, Hiroyuki*; Yamada, Yumi*; Shimakawa, Yoshio*; Suzuki, Toru; Kawada, Kenichi; Kubo, Shigenobu; Yamano, Hidemasa

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04

This paper describes an analysis study on the initiating phase of the ATWS events with SAS4A in order to confirm the appropriateness of the core design for the medium-scale SFR (750MWe-1765MWt). Not using a conventional lumping method that multiple fuel sub-assemblies having a similar characteristic were assigned to one channel (representing fuel assembly in SAS4A), each channel represents only the sub-assemblies of identical operating condition. In addition, the detailed power and reactivity distribution were set reflecting the change of insertion position of control rods. Applying these detailed analysis conditions, the SAS4A analyses were performed for unprotected loss-of-flow (ULOF) and unprotected transient overpower (UTOP) during both of the nominal power and the partial power operation. As a result, more proper event progression including incoherency of events especially fuel dispersion after fuel failure was successfully evaluated and then this analysis study suggested that the power excursion with prompt criticality leading to large mechanical energy release can be prevented in the initiating phase of the current design.

Journal Articles

Model verification and validation procedure for a neutronics design methodology of next generation fast reactors

Ohgama, Kazuya; Ikeda, Kazumi*; Ishikawa, Makoto; Kan, Taro*; Maruyama, Shuhei; Yokoyama, Kenji; Sugino, Kazuteru; Nagaya, Yasunobu; Oki, Shigeo

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04

Journal Articles

Numerical study on influence of Ohnesorge number and Reynolds number on the jet breakup behavior using the lattice Boltzmann method

Iwasawa, Yuzuru*; Abe, Yutaka*; Kaneko, Akiko*; Kanagawa, Tetsuya*; Saito, Shimpei*; Matsuo, Eiji*; Ebihara, Kenichi; Sakaba, Hiroshi*; Koyama, Kazuya*; Nariai, Hideki*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

For the safety design in which heat is properly removed from the molten fuel after the core disruptive accident in a sodium-cooled fast reactor, the estimation of the breakup behavior of molten fuel discharged into the coolant like a jet is desired. In order to investigate the influence of viscocity on the jet behavior, we simulated a jet discharged into a coolant using the three-dimensional lattice Boltzmann model for two-phase fluid, and examined the influence of Ohnesorge number and Reynolds number on the jet behavior. As a result, we made clear that it is necessary to consider viscosity of the coolant as well as that of the jet for the estimation of jet behavior.

Journal Articles

Numerical simulation of jet breakup behavior by the lattice Boltzmann method

Matsuo, Eiji*; Abe, Yutaka*; Iwasawa, Yuzuru*; Ebihara, Kenichi; Koyama, Kazuya*

Nihon Kikai Gakkai Rombunshu (Internet), 81(822), p.14-00409_1 - 14-00409_20, 2015/02

In order to understand the jet breakup behavior of the molten core material into coolant during a core disruptive accident (CDA) for a sodium-cooled fast reactor (SFR), we simulated the jet breakup due to the hydrodynamic interaction using the lattice Boltzmann method (LBM). The applicability of the LBM to the jet breakup simulation was validated by comparison with our experimental data. In addition, the influence of several dimensionless numbers such as Weber number and Froude number was examined using the LBM. As a result, we validated applicability of the LBM to the jet breakup simulation, and found that the jet breakup length is independent of Froude number and in good agreement with the Epstein's correlation when the jet interface becomes unstable.

Journal Articles

A Scenario of core disruptive accident for Japan sodium-cooled fast reactor to achieve in-vessel retention

Suzuki, Toru; Kamiyama, Kenji; Yamano, Hidemasa; Kubo, Shigenobu; Tobita, Yoshiharu; Nakai, Ryodai; Koyama, Kazuya*

Journal of Nuclear Science and Technology, 51(4), p.493 - 513, 2014/04

 Times Cited Count:46 Percentile:98.08(Nuclear Science & Technology)

As the most promising concept of SFRs, the JAEA has selected the advanced loop-type fast reactor, so-called JSFR. The safety design requirements of JSFR for design extension condition are the prevention of severe accidents and the mitigation of severe-accident consequences. For the mitigation of severe-accident consequences, in particular, the In-Vessel Retention (IVR) against postulated Core Disruptive Accidents (CDAs) is required. In order to investigate the sufficiency of these safety requirements, a CDA scenario should be constructed, in which the elimination of power excursion and the in-vessel cooling of core materials are evaluated so as to achieve IVR. In the present study, the factors leading to IVR failure were identified by creating phenomenological diagrams, and the effectiveness of design measures against them were evaluated based on experimental data and computer simulations. This is an unprecedented approach to the construction of a CDA scenario, and is an effective method to objectively investigate the factors of IVR failure and design measures against them. It was concluded that mechanical/thermal failures of the reactor vessel could be avoided by adequate design measures, and a clear vision for achieving IVR was obtained.

Journal Articles

Evaluation of jet breakup behavior by the lattice Boltzmann HCZ model, 1; Evaluation of jet breakup length

Matsuo, Eiji*; Abe, Yutaka*; Iwasawa, Yuzuru*; Ebihara, Kenichi; Kaneko, Akiko*; Sakaba, Hiroshi*; Koyama, Kazuya*

Dai-18-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu, p.75 - 76, 2013/06

When supposing a core distractive accident (CDA) in a sodium-cooled fast reactor (SFR), it is necessary to understand the breakup behavior of the molten core material jet into coolant. Thus, the jet breakup was simulated by the lattice Boltzmann (LB) HCZ model. First, the applicability to jet breakup of the LBHCZ model was verified by comparing the simulation result to our experimental data. Next, from sensitive analyses by the simulation, it was found that the jet breakup length is in good agreement with Epstein's correlation when hydrodynamic fragmentation is a dominant phenomenon of the jet breakup.

Journal Articles

Evaluation of jet breakup behavior by the lattice Boltzmann HCZ model, 2; Effect of ambient fluid field on jet breakup

Iwasawa, Yuzuru*; Abe, Yutaka*; Matsuo, Eiji*; Ebihara, Kenichi; Kaneko, Akiko*; Sakaba, Hiroshi*; Koyama, Kazuya*

Dai-18-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu, p.77 - 78, 2013/06

When supposing a core distractive accident (CDA) in a sodium-cooled fast reactor (SFR), it is necessary to understand the breakup behavior of the molten core material jet into coolant. In order to examine the effect of ambient fluid around the jet, the surface and fragmentation behavior was investigated using the lattice Boltzmann (LB) HCZ model. As a result, it was confirmed that the mechanism of the jet breakup behavior is one proposed by Epstein when hydrodynamic fragmentation is the dominant phenomenon for the jet break up.

Journal Articles

Influence of fragmentation on jet breakup behaviour

Iwasawa, Yuzuru*; Abe, Yutaka*; Kaneko, Akiko*; Kuroda, Taihei*; Matsuo, Eiji*; Ebihara, Kenichi; Sakaba, Hiroshi*; Koyama, Kazuya*; Ito, Kazuhiro*; Nariai, Hideki*

Proceedings of 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15) (USB Flash Drive), 12 Pages, 2013/05

In the safety design of a Fast Breeder Reactor(FBR), when it is supposed that a Core Disruptive Accident(CDA) occurs, it is strongly required that molten core materials are completely solidified and are cooled down by sodium coolant in a reactor vessel. In this study, we injected molten alloy and transparent fluid, which are a simulant of the molten core material, into water, which is a simulant of the coolant. In this study, we injected molten alloy and transparent fluid, which simulate the molten core material, into water, which simulates the coolant. In the experiment, we observed the jet breakup behavior of them using a high speed video camera, and compared the observe images with the previous theories. In addition, we simulated numerically the qualitative behavior of the liquid jet using a two-phase fluid model of the lattice Boltzmann method.

Journal Articles

Numerical simulation of melt-down behavior in SFR severe accidents by the MUTRAN code

Kubota, Ryuzaburo*; Yamada, Yumi*; Koyama, Kazuya*; Shimakawa, Yoshio*; Yamano, Hidemasa; Kubo, Shigenobu; Suzuki, Toru; Tobita, Yoshiharu

Proceedings of 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8) (USB Flash Drive), 8 Pages, 2012/12

This paper describes a melt-down event progression revealed by a numerical simulation in the protected loss of heat sink (PLOHS) event for Japan Sodium-cooled Fast Reactor (JSFR). A multi-component multi-field computer code, MUTRAN, has been applied in order to simulate complicated core material motions and associated heat-transfer phenomena among the materials in a degradation core. The analyses with MUTRAN covered core degradation behaviors from the intact geometry and addressed the two initial states: one was the core without the coolant as the leakage type, and the other was the core covered by the coolant only up to the top of the fissile fuel as the boiling type. The analyses revealed representative event progression.

Journal Articles

Evaluation of core disruptive accident for sodium-cooled fast reactors to achieve in-vessel retention

Suzuki, Toru; Kamiyama, Kenji; Yamano, Hidemasa; Kubo, Shigenobu; Tobita, Yoshiharu; Nakai, Ryodai; Koyama, Kazuya*

Proceedings of 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8) (USB Flash Drive), 10 Pages, 2012/12

The JAEA has selected the advanced loop-type fast reactor JSFR as the most promising concept for the commercialization. The safety design requirements of JSFR for Design Extension Condition are the control of severe plant conditions, including the prevention of accident progression and the mitigation of severe-accident consequences. For the mitigation of severe-accident consequences, the In-Vessel Retention (IVR) against Core Disruptive Accidents (CDAs) is required. In order to investigate the sufficiency of these safety requirements, a CDA scenario should be constructed, in which the elimination of power excursion and the achievement of IVR are evaluated. In the present study, the factors leading to IVR failure were identified by creating phenomenological diagrams, and the effectiveness of design measures against them were evaluated based on experimental data and computer simulation. It was concluded that mechanical/thermal failures of the reactor vessel could be avoided by adequate design measures, and a clear vision for achieving IVR was obtained.

Journal Articles

The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in ${it Lotus japonicus}$ nodules

Hakoyama, Tsuneo*; Oi, Ryo*; Hazuma, Kazuya*; Suga, Eri*; Adachi, Yuka*; Kobayashi, Mayumi*; Akai, Rie*; Sato, Shusei*; Fukai, Eigo*; Tabata, Satoshi*; et al.

Plant Physiology, 160(2), p.897 - 905, 2012/10

 Times Cited Count:27 Percentile:72.5(Plant Sciences)

Journal Articles

Development of Level 2 PSA methodology for sodium-cooled fast reactors; Overview of evaluation technology development

Suzuki, Toru; Nakai, Ryodai; Kamiyama, Kenji; Seino, Hiroshi; Koyama, Kazuya*; Morita, Koji*

NEA/CSNI/R(2012)2, p.381 - 391, 2012/07

For the probabilistic safety assessment (PSA) of sodium-cooled fast reactors (SFRs), JAEA consolidated the analytical methodologies and technical basis for all phases/sequences to be evaluated in the Level 2 PSA. In addition to the existing computational codes such as SAS4A, SIMMER-III, DEBNET, ARGO and APPLOHS, JAEA newly developed MUTRAN and SIMMER-LT in order to evaluate the long term behaviors of the material-relocation in the degraded core. These tools enabled the systematic assessment for the in-vessel accident sequences. For the ex-vessel accident sequences, JAEA also improved CONTAIN/LMR taking into account the feature of SFRs and verified the analytical models utilizing the new experiments such as sodium-concrete reaction test. In addition, the technical basis for constructing event trees was compiled, in which the dominant factors having significant effects on the event progression were corresponded to the related experiments and analytical results.

Journal Articles

J-ACTINET activities of training and education for actinide science research

Minato, Kazuo; Konashi, Kenji*; Yamana, Hajimu*; Yamanaka, Shinsuke*; Nagasaki, Shinya*; Ikeda, Yasuhisa*; Sato, Seichi*; Arita, Yuji*; Idemitsu, Kazuya*; Koyama, Tadafumi*

Proceedings of International Conference on Toward and Over the Fukushima Daiichi Accident (GLOBAL 2011) (CD-ROM), 5 Pages, 2011/12

Actinide science research is indispensable to maintain sustainable development of innovative nuclear technology. For actinide science research, special facilities with containment and radiation shields are needed to handle actinide materials. The number of facilities for actinide science research has been decreased, especially in universities, due to the high maintenance cost. J-ACTINET was established in 2008 to promote and facilitate actinide science research and to foster many of young scientists and engineers in actinide science. The research program was carried out, through which young researchers were expected to learn how to make experiments with advanced experimental tools and to broaden their horizons. The summer schools and computational science school were held to provide students and young researchers with the opportunities to come into contact with actinide science research. The overseas dispatch program was also carried out.

Journal Articles

Safety strategy of JSFR eliminating severe recriticality events and establishing in-vessel retention in the core disruptive accident

Sato, Ikken; Tobita, Yoshiharu; Konishi, Kensuke; Kamiyama, Kenji; Toyoka, Junichi; Nakai, Ryodai; Kubo, Shigenobu*; Kotake, Shoji*; Koyama, Kazuya*; Vassiliev, Y. S.*; et al.

Journal of Nuclear Science and Technology, 48(4), p.556 - 566, 2011/03

In the JSFR design, elimination of severe recriticality events in the Core Disruptive Accident (CDA) is intended as an effective measure to assure retention of the core materials within the reactor vessel. The design strategy is to control the potential of excessive void reactivity insertion in the Initiating Phase selecting appropriate design parameters such as maximum void reactivity on one hand, and to exclude core-wide molten-fuel-pool formation, which has been the main issue of CDA, with introduction of Inner Duct on the other hand. The effectiveness of these measures are reviewed based on existing experimental data and evaluations performed with validated analysis tools. It is judged that the present JSFR design can exlude severe power burst events.

52 (Records 1-20 displayed on this page)