Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 224

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Chemical species of iodine during sorption by activated carbon; Effects of original chemical species and fulvic acids

Kato, Tomoaki; Kozai, Naofumi; Tanaka, Kazuya; Kaplan, D. I.*; Utsunomiya, Satoshi*; Onuki, Toshihiko

Journal of Nuclear Science and Technology, 59(5), p.580 - 589, 2022/05

This study reports the effect of fulvic acids, which is a natural organic substance generally contained in groundwater, on the oxidation states of radioactive iodine anions (iodide and iodate). Iodide and iodate are contained in the contaminated water of the Fukushima Daiichi Nuclear Power Plant and supposed to be removed by activated carbon (AC) via adsorption. When fulvic acids does not exist in the experimental system, the adsorption of iodide on AC was less than that of iodate and their oxidation states after the adsorption were not changed. When fulvic acids existed, a fraction of the adsorbed iodate was reduced to iodide. This result indicates that the reduction of the adsorbed iodate progresses during the storage of the spent AC.

Journal Articles

Insights into boron removal from water using Mg-Al-LDH; Reaction parameters optimization & 3D-RSM modeling

Eljamal, O.*; Maamoun, I.; Alkhudhayri, S.*; Eljamal, R.*; Falyouna, O.*; Tanaka, Kazuya; Kozai, Naofumi; Sugihara, Yuji*

Journal of Water Process Engineering (Internet), 46, p.102608_1 - 102608_13, 2022/04

Journal Articles

Sorption of Pu(IV) on biogenic Mn oxide and complexation of Pu(IV) with organic ligands secreted by fungal cells

Tanaka, Kazuya; Tani, Yukinori*; Kozai, Naofumi; Onuki, Toshihiko

Journal of Radioanalytical and Nuclear Chemistry, 331(2), p.1109 - 1114, 2022/02

We investigated the sorption of Pu(IV) on biogenic Mn oxide produced by Mn(II)-oxidizing fungus. The sorption of Pu(IV) on biogenic Mn oxide was similar to that of U(VI) and different from that of Th(IV), possibly due to oxidation of Pu(IV) to Pu(VI). When Pu(IV) was sorbed on hyphae only, it was desorbed into the solution phase over time. Pu(IV) could be solubilized by complexation with organic ligands secreted by fungal cells. In particular, Pu(IV) desorption was observed under circumneutral pH conditions.

Journal Articles

Uranium (VI) sorption on illite under varying carbonate concentrations; Batch experiments, modeling, and cryogenic time-resolved laser fluorescence spectroscopy study

Mei, H.; Aoyagi, Noboru; Saito, Takumi*; Kozai, Naofumi; Sugiura, Yuki; Tachi, Yukio

Applied Geochemistry, 136, p.105178_1 - 105178_8, 2022/01

Journal Articles

Fe, Mn and $$^{238}$$U accumulations in ${it Phragmites australis}$ naturally growing at the mill tailings pond; Iron plaque formation possibly related to root-endophytic bacteria producing siderophores

Nakamoto, Yukihiro*; Doyama, Kohei*; Haruma, Toshikatsu*; Lu, X.*; Tanaka, Kazuya; Kozai, Naofumi; Fukuyama, Kenjin; Fukushima, Shigeru; Ohara, Yoshiyuki; Yamaji, Keiko*

Minerals (Internet), 11(12), p.1337_1 - 1337_17, 2021/12

Mine drainage is a vital water problem in the mining industry worldwide because of the heavy metal elements and low pH. Rhizofiltration using wetland plants is an appropriate method to remove heavy metals from the water via accumulation in the rhizosphere. ${it Phragmites australis}$ is one of the candidate plants for this method because of metal accumulation, forming iron plaque around the roots. At the study site, which was the mill tailings pond in the Ningyo-toge uranium mine, ${it P. australis}$ has been naturally growing since 1998. The results showed that ${it P. australis}$ accumulated Fe, Mn, and $$^{238}$$U in the nodal roots without/with iron plaque compared with other plant tissues. Among the 837 bacterial colonies isolated from nodal roots, 88.6% showed siderophore production activities. Considering iron plaque formation around ${it P. australis}$ roots, we hypothesized that microbial siderophores might influence iron plaque formation because bacterial siderophores have catechol-like functional groups. The complex of catechol or other phenolics with Fe was precipitated due to the networks between Fe and phenolic derivatives. The experiment using bacterial products of root endophytes, such as ${it Pseudomonas}$ spp. and ${it Rhizobium}$ spp., showed precipitation with Fe ions, and we confirmed that several ${it Ps.}$ spp. and ${it R.}$ spp. produced unidentified phenolic compounds. In conclusion, root-endophytic bacteria such as ${it Pseudomonas}$ spp. and ${it R.}$ spp., isolated from metal-accumulating roots of ${it P. australis}$, might influence iron plaque formation as the metal accumulation site. Iron plaque formation is related to tolerance in ${it P. australis}$, and ${it Ps.}$ spp. and ${it R.}$ spp. might indirectly contribute to tolerance.

Journal Articles

Radiocesium in Shiitake mushroom; Accumulation in living fruit bodies and leaching from dead fruit bodies

Guido-Garcia, F.; Sakamoto, Fuminori; David, K.*; Kozai, Naofumi; Grambow, B.

Chemosphere, 279, p.130511_1 - 130511_10, 2021/09

 Times Cited Count:0 Percentile:0(Environmental Sciences)

Cesium (Cs) accumulation by Shiitake was investigated to contribute to the elucidation of radiocesium-cycling mechanisms in forest environments. The results demonstrate that Shiitake non-specifically accumulates Cs while accumulating the essential element K and provide evidence that no selective Cs accumulation (or binding) sites exist within the Shiitake fruit body. Furthermore, the present results show that most accumulated Cs quickly leaches out from the dead fruit body with exposure to water. The leached Cs was largely adsorbable on clay minerals, suggesting that the Shiitake fruit body likely contains Cs in the cation form.

Journal Articles

Effect of bacterial siderophore on cesium dissolution from biotite

Kimura, Tatsuki*; Fukutani, Satoshi*; Ikegami, Maiko*; Sakamoto, Fuminori; Kozai, Naofumi; Grambow, B.*; Yoneda, Minoru*

Chemosphere, 276, p.130121_1 - 130121_7, 2021/08

 Times Cited Count:0 Percentile:0(Environmental Sciences)

The adsorption of cesium (Cs) on biotite and dissolution of Cs from Cs-bearing biotite using a siderophore were investigated aiming to contribute to the elucidation of radiocesium migration mechanisms in the soil environment. Cs was adsorbed on a hardly weathered biotite powder sample. A siderophore was extracted and purified from the bacterial culture medium, and the purified siderophore was used in five consecutive dissolution experiments of the biotite samples. The major components of the biotite (Al, Fe, and Mg) were dissolved almost stoichiometrically, strongly suggesting that the siderophore selectively dissolves the broken edges of the biotite. The Cs adsorbed on the broken edges was dissolved rapidly as the siderophore dissolved the broken edges, and then, the Cs adsorbed on the outer planar surface of the biotite particles was slowly dissolved.

Journal Articles

Sewage sludge ash contaminated with radiocesium; Solidification with alkaline-reacted metakaolinite (geopolymer) and Portland cement

Kozai, Naofumi; Sato, Junya; Osugi, Takeshi; Shimoyama, Iwao; Sekine, Yurina; Sakamoto, Fuminori; Onuki, Toshihiko

Journal of Hazardous Materials, 416, p.125965_1 - 125965_9, 2021/08

 Times Cited Count:1 Percentile:0(Engineering, Environmental)

Journal Articles

Carbonated nanohydroxyapatite from bone waste and its potential as a super adsorbent for removal of toxic ions

Sekine, Yurina; Nankawa, Takuya; Yamada, Teppei*; Matsumura, Daiju; Nemoto, Yoshihiro*; Takeguchi, Masaki*; Sugita, Tsuyoshi; Shimoyama, Iwao; Kozai, Naofumi; Morooka, Satoshi

Journal of Environmental Chemical Engineering, 9(2), p.105114_1 - 105114_12, 2021/04

 Times Cited Count:0 Percentile:0(Engineering, Environmental)

Remediating toxic ion contamination is crucial for protecting human health and the environment. This study aimed to provide a powerful strategy for effectively utilizing bone waste from the food production and preparation industries for removal of toxic ions. Here, we show that immersing pig bone in NaHCO$$_{3}$$ solution produced a carbonated nanohydroxyapatites (C-NHAP). The C-NHAP exhibited high adsorptivity for Sr$$^{2+}$$, Cd$$^{2+}$$, Pb$$^{2+}$$, and Cu$$^{2+}$$. The strontium adsorptivity was about 250 and 4,500 times higher than that of normal bone and synthetic HAP, respectively. The C-NHAP is an eco-friendly, high-performance material that is simple to prepare and should be useful for tackling problems of food waste disposal and environmental pollution.

Journal Articles

Effective removal of iodate by coprecipitation with barite; Behavior and mechanism

Tokunaga, Kohei; Takahashi, Yoshio*; Tanaka, Kazuya; Kozai, Naofumi

Chemosphere, 266, p.129104_1 - 129104_10, 2021/03

 Times Cited Count:1 Percentile:65.97(Environmental Sciences)

Radioactive iodine ($$^{129}$$I) is of great concern owing to its high mobility in the environment and long-term radiotoxicity, but there is a lack of effective techniques for removing iodate (IO$$_{3}$$$$^{-}$$) from aqueous solution. The aim of this study is to develop a new technique for removing radioactive iodate from contaminated solution by using barite (BaSO$$_{4}$$). In the present study, we examined the coprecipitation mechanism of iodate by barite at the molecular level for determining optimum conditions for iodate removal. The results showed that iodate was effectively removed from aqueous solution by coprecipitation, even in the presence of competitive anions in solution. Comparing our method with previous studies, iodate removal efficiency by barite was determined to be about two orders of magnitude greater than that by hydrotalcite-like layered double hydroxide at Cl$$^{-}$$ concentration of 10 mmol L$$^{-1}$$. Extended X-ray absorption fine structure (EXAFS) analysis indicated that incorporated iodate was strongly bound in the crystal lattice of barite by substituting the sulfate site in the structure when the iodine concentration was low. The charge compensation problem from the IO$$_{3}$$$$^{-}$$ substitution in SO$$_{4}$$$$^{2-}$$ site is achieved by the substitution of Na$$^{+}$$-IO$$_{3}$$$$^{-}$$ pairs at the nearest Ba$$^{2+}$$ site. Therefore, considering high removal efficiency and strong binding of iodate in barite, coprecipitation with barite is a promising material for removing radioactive iodate from various aqueous solutions contaminated with iodate.

Journal Articles

Spectroscopic and first-principles investigations of iodine species incorporation into ettringite; Implications for iodine migration in cement waste forms

Guo, B.*; Xiong, Y.*; Chen, W.*; Saslow, S. A.*; Kozai, Naofumi; Onuki, Toshihiko*; Dabo, I.*; Sasaki, Keiko*

Journal of Hazardous Materials, 389, p.121880_1 - 121880_11, 2020/05

 Times Cited Count:20 Percentile:95.57(Engineering, Environmental)

Journal Articles

Synergy effect of organic acids from plants on mineral dissolution by siderophore-producing bacteria

Kimura, Tatsuki*; Kozai, Naofumi; Sakamoto, Fuminori; Fukutani, Satoshi*; Ikegami, Maiko*

Doboku Gakkai Rombunshu, G (Kankyo) (Internet), 76(7), p.III_375 - III_382, 2020/00

no abstracts in English

Journal Articles

Adsorption mechanism of ReO$$_{4}$$$$^{-}$$ on Ni-Zn layered hydroxide salt and its application to removal of ReO$$_{4}$$$$^{-}$$ as a surrogate of TcO$$_{4}$$$$^{-}$$

Tanaka, Kazuya; Kozai, Naofumi; Yamasaki, Shinya*; Onuki, Toshihiko; Kaplan, D. I.*; Grambow, B.

Applied Clay Science, 182, p.105282_1 - 105282_8, 2019/12

 Times Cited Count:5 Percentile:57.36(Chemistry, Physical)

In this study, Ni-Zn layered hydroxide salt (LHS) was used for adsorption experiments of ReO$$_{4}$$$$^{-}$$, as a surrogate of TcO$$_{4}$$$$^{-}$$, in aqueous solutions with various initial Re and sodium salt concentrations. The maximum adsorption amount of Re was estimated at 127.7 mg/g (6.86 $$times$$ 10$$^{-4}$$ eq/g) by fitting adsorption isotherm of ReO$$_{4}$$$$^{-}$$ to Langmuir plot. The adsorption of ReO$$_{4}$$$$^{-}$$ at neutral pH was a reversible process by anion exchange, and decreased with increasing Cl$$^{-}$$, NO$$_{3}$$$$^{-}$$ and SO$$_{4}$$$$^{2-}$$ in solution. EXAFS analysis indicated that ReO$$_{4}$$$$^{-}$$ was adsorbed as an outer-sphere complex on Ni-Zn LHS. The Ni-Zn LHS is a more robust adsorbent for ReO$$_{4}$$$$^{-}$$ than the Mg-Al LDH in terms of solution pH and tolerance to competing anions, and may be an effective alternative to the traditional and more limited method of removing aqueous TcO$$_{4}$$$$^{-}$$ by reductive precipitation.

Journal Articles

Reduction behaviors of permanganate by microbial cells and concomitant accumulation of divalent cations of Mg$$^{2+}$$, Zn$$^{2}$$+, and Co$$^{2+}$$

Kato, Tomoaki*; Yu, Q.*; Tanaka, Kazuya; Kozai, Naofumi; Saito, Takumi*; Onuki, Toshihiko

Journal of Environmental Sciences, 86, p.78 - 86, 2019/12

 Times Cited Count:0 Percentile:0(Environmental Sciences)

This paper investigated the fate of the dissolved permanganate in aqueous solution after contact with bacterial cells and metal accumulation during precipitation of Mn oxides. When Mn(VII) was contacted with bacterial cells, cells were damaged and Mn(VII) was reduced by cells to lower valence and precipitated as Mn oxides (biomass Mn oxides). When Co$$^{2+}$$ ions were present, Co was incorporated into Mn oxides as Co$$^{3+}$$. These results suggest that Mn(VII) can be used to remove metal ions when introduced to wastewater as disinfectant.

Journal Articles

${it In-situ}$ investigation of radioactive Cs mobility around litter zone in contaminated forest using spent mushroom substrata

Onuki, Toshihiko*; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya*; Sasaki, Yoshito; Niizato, Tadafumi

Journal of Nuclear Science and Technology, 56(9-10), p.814 - 821, 2019/09

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

We used the spent mushroom substrata (SMSs) which are a kind of by-product after growing edible mushrooms for the ${it in-situ}$ investigation of radioactive Cs mobility in litter zone in a forest of Fukushima prefecture, Japan. The powder SMS was filled in a plastic net bag of 0.35$$times$$0.55 m, then was placed in a forest for $$sim$$6 months under three kinds of different conditions without treatment (No treatment), covered with wooden box (With box), and with zeolite placed on upper position of ground surface (With zeolite). We determined the ratio of radioactivity (TF) in the SMS to that of the soil and litter beneath the SMS bags. TFs of "No treatment" and of "With zeolite" were determined between $$sim$$0.01 and $$sim$$0.05 for 6 months. On the other hand, TFs of "With box" were lower by one order at 2 and 4 months than those of "No treatment" and of "With zeolite", and nearly the same values as TFs of "No treatment" and "With zeolite" at 6 months. These results clearly indicate that radioactive Cs accumulates in SMS mainly by throughfall. In addition, for a period of several months, fungi contribute to the accumulation of radioactive Cs in the litter zone, even though radioactive Cs was tightly associated with the soil.

Journal Articles

Role of filamentous fungi in migration of radioactive cesium in the Fukushima forest soil environment

Onuki, Toshihiko; Sakamoto, Fuminori; Kozai, Naofumi; Namba, Kenji*; Neda, Hitoshi*; Sasaki, Yoshito; Niizato, Tadafumi; Watanabe, Naoko*; Kozaki, Tamotsu*

Environmental Science; Processes & Impacts, 21(7), p.1164 - 1173, 2019/07

 Times Cited Count:7 Percentile:53.88(Chemistry, Analytical)

The fate of radioactive Cs deposited after the Fukushima nuclear power plant accident and its associated radiological impacts are largely dependent on its mobility from surface soils to forest ecosystems. We measured the accumulation of radioactive Cs in the fruit bodies of wild fungi in the forest at Iidate, Fukushima, Japan. The transfer factors (TFs) of radioactive Cs from soil to the fruit bodies of wild fungi were between 10 $$^{-2}$$to 10$$^{2}$$, a range similar to those reported for the fruit bodies collected in Europe after the Chernobyl accident and in parts of Japan contaminated by nuclear bomb test fallout. Comparison of the TFs of the wild mushroom and that of the fungal hyphae of 704 stock strains grown on agar medium containing nutrients and radioactive Cs showed that the TFs of wild mushroom were lower. TF was less than 0.1 after addition of the minerals zeolite, vermiculite, phlogopite, smectite, or illite of 1% weight to the agar medium. These results indicate that the presence of minerals decrease Cs uptake by fungi grown in the agar medium.

Journal Articles

A Laboratory investigation of microbial degradation of simulant fuel debris by oxidizing microorganisms

Liu, J.; Dotsuta, Yuma; Kitagaki, Toru; Kozai, Naofumi; Yamaji, Keiko*; Onuki, Toshihiko

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 2 Pages, 2019/05

To decommission the Fukushima Daiichi Nuclear Power Plant (FDNPP), it is necessary to estimate the current status of fuel debris and predicate the possible change under various condition. Some microorganisms may enter the plant due to the seawater injection after accident and future defueling activity. In this study, microbial influence on fuel debris under aerobic condition was experimentally investigated. By culturing some bacteria in the presence of simulant fuel debris in liquid medium, the microbial degradation of fuel debris was observed.

Journal Articles

Study on coordination structure of Re adsorbed on Mg-Al layered double hydroxide using X-ray absorption fine structure

Tanaka, Kazuya; Kozai, Naofumi; Onuki, Toshihiko; Grambow, B.

Journal of Porous Materials, 26(2), p.505 - 511, 2019/04

 Times Cited Count:6 Percentile:50.98(Chemistry, Applied)

In this study, we utilized X-ray absorption fine structure spectroscopy to clarify the coordination structure of Re in Mg-Al LDH as a surrogate of Tc. Adsorption experiments of ReO$$_{4}$$$$^{-}$$ on calcined and uncalcined Mg-Al LDHs were conducted in aqueous solutions with different concentrations of NaCl, NaNO$$_{3}$$, and Na$$_{2}$$SO$$_{4}$$. Calcined Mg-Al LDH showed much higher adsorption than uncalcined one. The adsorption of ReO$$_{4}$$$$^{-}$$ was reversible, and decreased with increasing concentration of competing anions like Cl$$^{-}$$, NO$$_{3}$$$$^{-}$$, or SO$$_{4}$$$$^{2-}$$. Analysis of Re L$$_{III}$$-edge extended X-ray absorption fine structure indicated that ReO$$_{4}$$$$^{-}$$ was adsorbed as an outer-sphere complex on Mg-Al LDH. The observed Re adsorption-desorption behavior, which was sensitive to the presence of competing anions, was consistent with the formation of outer sphere-complex.

Journal Articles

Root-endophytic Chaetomium cupreum chemically enhances aluminium tolerance in $$Miscanthus sinensis$$ via increasing the aluminium detoxicants, chlorogenic acid and oosporein

Haruma, Toshikatsu*; Yamaji, Keiko*; Ogawa, kazuyoshi*; Masuya, Hayato*; Sekine, Yurina; Kozai, Naofumi

PLOS ONE (Internet), 14(2), p.e0212644_1 - e0212644_16, 2019/02

 Times Cited Count:13 Percentile:87.95(Multidisciplinary Sciences)

Miscanthus sinensis Andersson is a pioneer plant species that grows naturally at mining sites. $$Miscanthus sinensis$$ can detoxify aluminium (Al) by producing phytosiderophores. Root-endophytic Chaetomium cupreum, which produces microbial siderophores, enhances Al tolerance in M. sinensis. We identified the siderophore produced by C. cupreum as oosporein. It was revealed that oosporein could detoxify Al. Inoculation test of C. cupreum onto M. sinensis in acidic mine soil showed that C. cupreum promoted seedling growth, and enhanced Al tolerance.

Journal Articles

Adsorption of Cs onto biogenic birnessite; Effects of layer structure, ionic strength, and competition cations

Yu, Q.*; Tanaka, Kazuya; Kozai, Naofumi; Sakamoto, Fuminori; Tani, Yukinori*; Onuki, Toshihiko

ACS Earth and Space Chemistry (Internet), 2(8), p.797 - 810, 2018/08

Most of Mn oxides are biogenic and known to adsorb cesium (Cs) on the surface. This study investigated structural transformation of biogenic birnessite by accommodating commonly occurring natural heavy metals (Zn, Ni) during the formation of Mn oxides and the influence of those metals on the adsorption behavior of Cs on Mn oxides. It was found that the presence of heavy metals during bio-oxidation of Mn(II), followed by exposure to a low pH aqueous solution, increased the number of available layer vacancies, which consequently increased the adsorption capacity of Cs in the final product birnessite.

224 (Records 1-20 displayed on this page)