Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Kato, Atsushi; Kubo, Shigenobu; Chikazawa, Yoshitaka; Miyagawa, Takayuki*; Uchita, Masato*; Suzuno, Tetsuji*; Endo, Junji*; Kubo, Koji*; Murakami, Hisatomo*; Uzawa, Masayuki*; et al.
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 11 Pages, 2022/04
The authors are carrying out conceptual design studies for a pool-type sodium-cooled fast reactor. There are main challenges such as measures against severe earthquake in Japan, thermal hydraulic in a reactor vessel (RV), a decay heat removal system design. When the JP-pool SFR of 650 MWe is installed in Japan, it shall be designed against the severe seismic conditions. Additionally, a newly three-dimensional seismic isolation system is under development.
Miura, Hikaru*; Ishimaru, Takashi*; Ito, Yukari*; Kuribara, Yuichi; Otosaka, Shigeyoshi*; Sakaguchi, Aya*; Misumi, Kazuhiro*; Tsumune, Daisuke*; Kubo, Atsushi*; Higaki, Shogo*; et al.
Scientific Reports (Internet), 11, p.5664_1 - 5664_11, 2021/03
Times Cited Count:15 Percentile:64.34(Multidisciplinary Sciences)For the first time, we isolated and investigated seven CsMPs (radioactive caesium-bearing microparticles) from marine particulate matter and sediment. From the elemental composition, the Cs/Cs activity ratio, and the Cs activity per unit volume results, we inferred that the five CsMPs collected from particulate matter were emitted from Unit 2 of the FDNPP, whereas the two CsMPs collected from marine sediment were possibly emitted from Unit 3. The presence of CsMPs can cause overestimation of the solid-water distribution coefficient of Cs in marine sediments and particulate matter and a high apparent radiocaesium concentration factor for marine biota. CsMPs emitted from Unit 2, which were collected from the estuary of a river that flowed through a highly contaminated area, may have been deposited on land and then transported by the river. By contrast, CsMPs emitted from Unit 3 were possibly transported eastward by the wind and deposited directly onto the ocean surface.
Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.
Sonnenschein, V.*; Tsuji, Yoshiyuki*; Kokuryu, Shoma*; Kubo, Wataru*; Suzuki, So*; Tomita, Hideki*; Kiyanagi, Yoshiaki*; Iguchi, Tetsuo*; Matsushita, Taku*; Wada, Nobuo*; et al.
Review of Scientific Instruments, 91(3), p.033318_1 - 033318_12, 2020/03
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Matsushita, Taku*; Sonnenschein, V.*; Guo, W.*; Hayashida, Hirotoshi*; Hiroi, Kosuke; Hirota, Katsuya*; Iguchi, Tetsuo*; Ito, Daisuke*; Kitaguchi, Masaaki*; Kiyanagi, Yoshiaki*; et al.
Journal of Low Temperature Physics, 196(1-2), p.275 - 282, 2019/07
Times Cited Count:1 Percentile:4.14(Physics, Applied)Yoshida, Go*; Ninomiya, Kazuhiko*; Inagaki, Makoto*; Higemoto, Wataru; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Miura, Taichi*; Kubo, Kenya*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 320(2), p.283 - 289, 2019/05
Times Cited Count:4 Percentile:36.45(Chemistry, Analytical)The role of valence electrons for the muon capture process by molecules is experimentally investigated with the aid of cascade calculations. Low-momentum muons are introduced to gas targets below atmospheric pressure. The initial states of captured muons are determined from the measured muonic X-ray structure of the Lyman and Balmer series. We propose that the lone pair electrons in the carbon atom of CO significantly contribute to the capture of a muon with large angular momenta.
Ninomiya, Kazuhiko*; Ito, Takashi; Higemoto, Wataru; Kawamura, Naritoshi*; Strasser, P.*; Nagatomo, Takashi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Kita, Makoto*; Shinohara, Atsushi*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 319(3), p.767 - 773, 2019/03
Times Cited Count:12 Percentile:75.51(Chemistry, Analytical)Wada, Yuki*; Bowers, G. S.*; Enoto, Teruaki*; Kamogawa, Masashi*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Smith, D.*; Furuta, Yoshihiro*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; et al.
Geophysical Research Letters, 45(11), p.5700 - 5707, 2018/06
Times Cited Count:30 Percentile:77.87(Geosciences, Multidisciplinary)Adhi, P. M.*; Okubo, Nariaki; Komatsu, Atsushi; Kondo, Masatoshi*; Takahashi, Minoru*
Energy Procedia, 131, p.420 - 427, 2017/12
Times Cited Count:1 Percentile:59.33(Energy & Fuels)The ionic conductivity of solid electrolyte may insufficient, and the sensor output signal will deviate from the theoretical one in low temperature. The performance of oxygen sensor with Ag/air reference electrode (RE) and liquid Bi/BiO RE was tested in low-temperature LBE at 300450C and the charge transfer reactions impedance at the electrode-electrolyte interface was analyzed by electrochemical impedance analysis (EIS). After steady state condition, both of the sensors performed well and can be used at 300450C. Bi/Bi/BiO RE has lower impedance than Ag/air RE. Therefore, the response time of the oxygen sensor with Bi/Bi/BiO RE is faster than the oxygen sensor with Ag/air RE in the low-temperature region.
Kondo, Masatoshi*; Okubo, Nariaki; Irisawa, Eriko; Komatsu, Atsushi; Ishikawa, Norito; Tanaka, Teruya*
Energy Procedia, 131, p.386 - 394, 2017/12
Times Cited Count:10 Percentile:97.26(Energy & Fuels)The chemical behaviors of lead (Pb) based coolants in the air ingress accident of fast reactors were investigated by means of the thermodynamic considerations and the static oxidation experiments for Pb alloys at various chemical compositions. The results of the static oxidation tests for lead-bismuth (Pb-Bi) alloys indicated that Pb was depleted from the alloy due to the preferential formation of PbO in air at 773K. Pb-Bi oxide and BiO were formed after the enrichment of Bi in the alloys due to the Pb depletion. The oxidation rates of the alloys were much larger than that of the steels, and became larger with higher Pb concentration in the alloys. The compatibility of Pb-Bi alloys with stainless steel was worse when the Pb concentration in the alloys became low, since the dissolution type corrosion was promoted by the Bi composition in the alloy. The Pb-Li alloys were oxidized as they formed LiPbO and LiCO. Then, Li was depleted from the alloy.
Takaya, Shigeru; Chikazawa, Yoshitaka; Hayashida, Kiichi; Tagawa, Akihiro; Kubo, Shigenobu; Yamashita, Atsushi
Hozengaku, 15(4), p.71 - 78, 2017/01
A maintenance management suitable to nuclear power plants (NPP) at R&D stage was discussed. Objectives of maintenance management of NPP at R&D stage was first clarified. Next, applicability of codes for maintenance management of commercial NPP to NPP at R&D stage was discussed. Then, requirements and consideration for maintenance management of NPP at R&D stage was proposed. Finally, an example that the proposal was applied to setting maintenance program of sodium-cooled fast reactor was presented.
Chikazawa, Yoshitaka; Kato, Atsushi*; Yamamoto, Tomohiko; Kubo, Shigenobu; Ohno, Shuji; Iwasaki, Mikinori*; Hara, Hiroyuki*; Shimakawa, Yoshio*; Sakaba, Hiroshi*
Nuclear Technology, 196(1), p.61 - 73, 2016/10
Times Cited Count:1 Percentile:9.88(Nuclear Science & Technology)JSFR adopts double boundary for all sodium components. However, design measures are investigated for the secondary sodium fire inside the reactor building, which might be assumed as design extension conditions (DECs). Candidates of sodium fire measures in the secondary sodium systems such as sodium drain, nitrogen injection, pressure release valve, catch pan and leak sodium drain system have been compared from the view point of safety. Wide range of sodium fires in the steam generator room and air cooler have been analyzed evaluating performances of the candidate sodium fire measures.
Takaya, Shigeru; Chikazawa, Yoshitaka; Hayashida, Kiichi; Tagawa, Akihiro; Kubo, Shigenobu; Yamashita, Atsushi
JAEA-Research 2016-006, 66 Pages, 2016/07
A maintenance management required to nuclear power reactors at the R&D stage was discussed. It is the most important to ensure safety of nuclear power plants by taking account of characteristics of nuclear power reactors at the R&D stage. In addition, it is needed to establish a system of maintenance management technologies suitable for reactor types. In this report, objectives of maintenance management of nuclear power reactors at the R&D stage was clarified. Next, requirements and consideration for maintenance management was discussed according to the objectives. "Codes for maintenance management of nuclear power plants" and "Guides for maintenance management of nuclear power plants" were refereed in the discussion. Then, a draft of codes for maintenance management of nuclear power plants at the R&D stage were newly proposed. Finally, an example that the draft codes were applied to components containing sodium, typical components of sodium-cooled fast reactor, was presented.
Ninomiya, Kazuhiko*; Kubo, Kenya*; Nagatomo, Takashi*; Higemoto, Wataru; Ito, Takashi; Kawamura, Naritoshi*; Strasser, P.*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Suzuki, Takao*; et al.
Analytical Chemistry, 87(9), p.4597 - 4600, 2015/05
Times Cited Count:28 Percentile:70.29(Chemistry, Analytical)Ikeda, Yoshitaka; Okano, Fuminori; Sakasai, Akira; Hanada, Masaya; Akino, Noboru; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; Kubo, Hirotaka; Kobayashi, Kazuhiro; et al.
Nihon Genshiryoku Gakkai Wabun Rombunshi, 13(4), p.167 - 178, 2014/12
The JT-60U torus was disassembled so as to newly install the superconducting tokamak JT-60SA torus. The JT-60U used the deuterium for 18 years, so the disassembly project of the JT-60U was the first disassembly experience of a fusion device with radioactivation in Japan. All disassembly components were stored with recording the data such as dose rate, weight and kind of material, so as to apply the clearance level regulation in future. The lessons learned from the disassembly project indicated that the cutting technologies and storage management of disassembly components were the key factors to conduct the disassembly project in an efficient way. After completing the disassembly project, efforts have been made to analyze the data for characterizing disassembly activities, so as to contribute the estimation of manpower needs and the radioactivation of the disassembly components on other fusion devices.
Ikeda, Yoshitaka; Okano, Fuminori; Hanada, Masaya; Sakasai, Akira; Kubo, Hirotaka; Akino, Noboru; Chiba, Shinichi; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; et al.
Fusion Engineering and Design, 89(9-10), p.2018 - 2023, 2014/10
Times Cited Count:2 Percentile:15.60(Nuclear Science & Technology)Disassembly of the JT-60U torus was started in 2009 after 18-years D operations, and was completed in October 2012. The JT-60U torus was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to D-D reactions. Since this work is the first experience of disassembling a large radioactive fusion device in Japan, careful disassembly activities have been made. About 13,000 components cut into pieces with measuring the dose rates were removed from the torus hall and stored safely in storage facilities by using a total wokers of 41,000 person-days during 3 years. The total weight of the disassembly components reached up to 5,400 tons. Most of the disassembly components will be treated as non-radioactive ones after the clearance verification under the Japanese regulation in future. The assembly of JT-60SA has started in January 2013 after this disassembly of JT-60U torus.
Shinto, Katsuhiro; Ichikawa, Masahiro; Takahashi, Yasuyuki*; Kubo, Takashi*; Tsutsumi, Kazuyoshi; Kikuchi, Takayuki; Kasugai, Atsushi; Sugimoto, Masayoshi; Gobin, R.*; Girardot, P.*; et al.
Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1009 - 1012, 2014/10
The prototype accelerator is being developed as an engineering validation for the International Fusion Materials Irradiation Facility (IFMIF) equipped with an accelerator-driven-type neutron source for developing fusion reactor materials. This prototype accelerator is a deuteron linear accelerator consisting of an injector, an RFQ, a superconducting linac and their auxiliaries. It aims to produce a CW D beam with the energy and current of 9 MeV/125 mA. The injector test was completed at CEA/Saclay in 2012 for producing a CW H beam and a CW D beam with the energy and current of 100 keV/140 mA. After the beam test at CEA/Saclay, the injector was transported to the International Fusion Energy Research Centre (IFERC) located in Rokkasho, Aomori, Japan. In the end of 2013, installation of the injector was started at IFERC for the injector beam test beginning from summer 2014 in order to obtain better beam qualities to be satisfied with the injection and acceleration of the following accelerators. In this paper, some results of the injector beam test performed at CEA/Saclay and the status quo of the installation of the injector at IFERC are presented.
Kobayashi, Nobuyuki*; Nakamura, Takashi*; Kondo, Yosuke*; Tostevin, J. A.*; Utsuno, Yutaka; Aoi, Nori*; Baba, Hidetada*; Barthelemy, R.*; Famiano, M. A.*; Fukuda, Naoki*; et al.
Physical Review Letters, 112(24), p.242501_1 - 242501_5, 2014/06
Times Cited Count:98 Percentile:94.46(Physics, Multidisciplinary)no abstracts in English
Kato, Atsushi; Kubo, Shigenobu; Chikazawa, Yoshitaka; Hayafune, Hiroki; Yokoi, Shinobu*; Nakata, Shuhei*; Tani, Akihiro*; Shimakawa, Yoshio*
Proceedings of 2014 International Congress on the Advances in Nuclear Power Plants (ICAPP 2014) (CD-ROM), p.616 - 623, 2014/04
This paper focuses on loss of heat removal system (LOHRS) type event as Design Extension Condition (DEC) and describes candidates design measures to improve the decay heat removal system of JSFR against LOHRS type DEC. The design requirements are determined based on the Safety Design Criteria for Generation-IV Sodium-cooled fast reactor system. Effectiveness and reliability of the candidate design measures are discussed with preliminary evaluations.