Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 47

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutronic design of basic cores of the new STACY

Izawa, Kazuhiko; Ishii, Junichi; Okubo, Takuya; Ogawa, Kazuhiko; Tonoike, Kotaro

Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 9 Pages, 2019/09

Japan Atomic Energy Agency, JAEA, is conducting the renewal program of the heterogeneous water moderated critical assembly STACY (Static Experiment Critical Facility) in order to verify the criticality calculation considering fuel debris which have been produced in the accident of Fukushima Daiichi Nuclear Power Station. The first criticality of the new STACY is scheduled at the beginning of 2021. After the first criticality, it is necessary to perform a series of critical experiments with a series of basic experimental core in order to gain a proficiency of operators and grasp the uncertainty that accompanies the result of critical experiments in STACY. Prior to the construction of the new STACY, a series of neutronic calculation was carried out for licensing and planning first series of critical experiment. In this paper, possible core configuration of the basic experimental core and their limitations are discussed and presented.

Journal Articles

Hydrophobic platinum honeycomb catalyst to be used for tritium oxidation reactors

Iwai, Yasunori; Kubo, Hitoshi*; Oshima, Yusuke*; Noguchi, Hiroshi*; Edao, Yuki; Taniuchi, Junichi*

Fusion Science and Technology, 68(3), p.596 - 600, 2015/10

 Times Cited Count:2 Percentile:17.57(Nuclear Science & Technology)

We have newly developed the hydrophobic platinum honeycomb catalysts applicable to tritium oxidation reactor since the honeycomb-shape catalyst can decrease the pressure drop. Two types of hydrophobic honeycomb catalyst have been test-manufactured. One is the hydrophobic platinum catalyst on a metal honeycomb. The other is the hydrophobic platinum catalyst on a ceramic honeycomb made of silicon carbide. The fine platinum particles around a few nanometers significantly improve the catalytic activity for the oxidation tritium at a tracer concentration. The hydrogen concentration in the gaseous feed slightly affects the overall reaction rate constant for hydrogen oxidation. Due to the competitive adsorption of hydrogen and water molecules on platinum surface, the overall reaction rate constant has the bottom value. The hydrogen concentration for the bottom value is 100 ppm under the dry feed gas. We have experimentally confirmed the activity of these honeycomb catalysts is as good as that of pellet-shape hydrophobic catalyst. The results support the hydrophobic honeycomb catalysts are applicable to tritium oxidation reactor.

Journal Articles

Dismantlement of large fusion experimental device JT-60U

Ikeda, Yoshitaka; Okano, Fuminori; Sakasai, Akira; Hanada, Masaya; Akino, Noboru; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; Kubo, Hirotaka; Kobayashi, Kazuhiro; et al.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 13(4), p.167 - 178, 2014/12

The JT-60U torus was disassembled so as to newly install the superconducting tokamak JT-60SA torus. The JT-60U used the deuterium for 18 years, so the disassembly project of the JT-60U was the first disassembly experience of a fusion device with radioactivation in Japan. All disassembly components were stored with recording the data such as dose rate, weight and kind of material, so as to apply the clearance level regulation in future. The lessons learned from the disassembly project indicated that the cutting technologies and storage management of disassembly components were the key factors to conduct the disassembly project in an efficient way. After completing the disassembly project, efforts have been made to analyze the data for characterizing disassembly activities, so as to contribute the estimation of manpower needs and the radioactivation of the disassembly components on other fusion devices.

Journal Articles

Safe disassembly and storage of radioactive components of JT-60U torus

Ikeda, Yoshitaka; Okano, Fuminori; Hanada, Masaya; Sakasai, Akira; Kubo, Hirotaka; Akino, Noboru; Chiba, Shinichi; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; et al.

Fusion Engineering and Design, 89(9-10), p.2018 - 2023, 2014/10

 Times Cited Count:2 Percentile:16.44(Nuclear Science & Technology)

Disassembly of the JT-60U torus was started in 2009 after 18-years D$$_{2}$$ operations, and was completed in October 2012. The JT-60U torus was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to D-D reactions. Since this work is the first experience of disassembling a large radioactive fusion device in Japan, careful disassembly activities have been made. About 13,000 components cut into pieces with measuring the dose rates were removed from the torus hall and stored safely in storage facilities by using a total wokers of 41,000 person-days during 3 years. The total weight of the disassembly components reached up to 5,400 tons. Most of the disassembly components will be treated as non-radioactive ones after the clearance verification under the Japanese regulation in future. The assembly of JT-60SA has started in January 2013 after this disassembly of JT-60U torus.

Journal Articles

Hydrophobic Pt catalyst for combustion of hydrogen isotopes at low temperatures

Iwai, Yasunori; Kubo, Hitoshi*; Sato, Katsumi; Oshima, Yusuke*; Noguchi, Hiroshi*; Taniuchi, Junichi*

Proceedings of 7th Tokyo Conference on Advanced Catalytic Science and Technology (TOCAT-7) (USB Flash Drive), 2 Pages, 2014/06

Hydrophobic platinum catalysts have been developed especially for combustion of hydrogen isotopes released in a nuclear facility. A new type of hydrophobic hydrogen combustion catalyst commercially named TKK-KNOITS catalyst is hardly susceptible to water mist and water vapor in the atmosphere and water produced by hydrogen combustion. It is capable of maintaining the activity even at relatively low temperatures. The TKK-KNOITS catalyst is superior to other previous hydrophobic catalysts in applicability to wide range of hydrogen concentration from very thin to dense. The catalyst which carrier is composed of inorganic oxide has thermal stability up to 873 K.

Journal Articles

Assembly study for JT-60SA tokamak

Shibanuma, Kiyoshi; Arai, Takashi; Hasegawa, Koichi; Hoshi, Ryo; Kamiya, Koji; Kawashima, Hisato; Kubo, Hirotaka; Masaki, Kei; Saeki, Hisashi; Sakurai, Shinji; et al.

Fusion Engineering and Design, 88(6-8), p.705 - 710, 2013/10

 Times Cited Count:10 Percentile:61.16(Nuclear Science & Technology)

Journal Articles

Room-temperature reactor packed with hydrophobic catalysts for the oxidation of hydrogen isotopes released in a nuclear facility

Iwai, Yasunori; Sato, Katsumi; Taniuchi, Junichi*; Noguchi, Hiroshi*; Kubo, Hitoshi*; Harada, Nobuo*; Oshima, Yusuke*; Yamanishi, Toshihiko

Journal of Nuclear Science and Technology, 48(8), p.1184 - 1192, 2011/08

 Times Cited Count:34 Percentile:91.42(Nuclear Science & Technology)

The inorganic-based hydrophobic Pt-catalyst named H1P has been developed especially for efficient oxidation of a tracer level of tritium in the ambient temperature range even in the presence of saturated water vapor. The overall reaction rate constant for H1P catalyst in the ambient temperature range was considerably larger than that for traditionally applied Pt/Al$$_{2}$$O$$_{3}$$ catalyst. Moreover, the decrease in reaction rate for H1P in the presence of saturated water vapor compared with in the absence of water vapor was slight due to its excellence in hydrophobic performance. Oxidation reaction on the catalyst surface is the rate-controlling step in the ambient temperature range and diffusion in a catalyst substratum above 313 K due to its fine porosity. The overall reaction rate constant in the ambient temperature range was dependent on the space velocity and hydrogen concentration in carrier.

Journal Articles

Safety strategy of JSFR eliminating severe recriticality events and establishing in-vessel retention in the core disruptive accident

Sato, Ikken; Tobita, Yoshiharu; Konishi, Kensuke; Kamiyama, Kenji; Toyooka, Junichi; Nakai, Ryodai; Kubo, Shigenobu*; Kotake, Shoji*; Koyama, Kazuya*; Vassiliev, Y. S.*; et al.

Journal of Nuclear Science and Technology, 48(4), p.556 - 566, 2011/03

In the JSFR design, elimination of severe recriticality events in the Core Disruptive Accident (CDA) is intended as an effective measure to assure retention of the core materials within the reactor vessel. The design strategy is to control the potential of excessive void reactivity insertion in the Initiating Phase selecting appropriate design parameters such as maximum void reactivity on one hand, and to exclude core-wide molten-fuel-pool formation, which has been the main issue of CDA, with introduction of Inner Duct on the other hand. The effectiveness of these measures are reviewed based on existing experimental data and evaluations performed with validated analysis tools. It is judged that the present JSFR design can exlude severe power burst events.

Journal Articles

Improvement of poly(vinyl alcohol) properties by the addition of magnesium nitrate

Kubo, Junichi*; Rahman, N.*; Takahashi, Nobuaki; Kawai, Takahiko*; Matsuba, Go*; Nishida, Koji*; Kanaya, Toshiji*; Yamamoto, Masahide*

Journal of Applied Polymer Science, 112(3), p.1647 - 1652, 2009/05

 Times Cited Count:25 Percentile:62.54(Polymer Science)

Aiming at improvement of mechanical and dielectric properties of poly(vinyl alcohol) (PVA) we prepared composites of PVA and magnesium nitrate. It was found that the composites were very soft and rubber-like, and the glass transition temperature decreased with increasing the salt concentration. Wide-angle X-ray diffraction and small-angle X-ray scattering revealed that the crystallites of PVA were destroyed by the additive and it was a cause of the softening.

Journal Articles

Observation of an extended magnetic field penetration in amorphous superconducting MoGe films

Nishio, Taichiro*; Okayasu, Satoru; Suzuki, Junichi; Kokubo, Nobuhito*; Kadowaki, Kazuo*

Physical Review B, 77(5), p.052503_1 - 052503_4, 2008/02

 Times Cited Count:16 Percentile:56.61(Materials Science, Multidisciplinary)

We have observed the magnetic field distribution of a vortex generated in amorphous ($$alpha$$)-MoGe thin films with various thicknesses ($$d$$) ($$<$$$$lambda$$, where $$lambda$$ is the penetration depth) with a scanning SQUID microscope. From analyses of the field distribution as functions of the film thickness and temperature, it is found that an effective in-plane penetration depth ($$Lambda$$) extends with descreasing d, in accordance with the Pearl's prediction $$Lambda$$=2$$lambda$$$$^{2}$$/$$d$$. Temperature dependence of $$Lambda$$ is also consistent with the two-fluid model involving the Pearl's prediction.

Journal Articles

The Result of a wall failure in-pile experiment under the EAGLE project

Konishi, Kensuke; Toyooka, Junichi; Kamiyama, Kenji; Sato, Ikken; Kubo, Shigenobu*; Kotake, Shoji*; Koyama, Kazuya*; Vurim, A. D.*; Gaidaichuk, V. A.*; Pakhnits, A. V.*; et al.

Nuclear Engineering and Design, 237(22), p.2165 - 2174, 2007/11

 Times Cited Count:42 Percentile:92.58(Nuclear Science & Technology)

The WF (Wall Failure) test of the EAGLE program, in which $$sim$$2kg of uranium dioxide fuel-pins were melted by nuclear heating, was successfully conducted in the IGR of NNC/Kazakhstan. In this test, a 3mm-thick stainless steel (SS) wall structure was placed between fuel pins and a 10mm-thick sodium-filled channel (sodium gap). During the transient, fuel pins were heated, which led to the formation of a fuel-steel mixture pool. Under the transient nuclear heating condition, the SS wall was strongly heated by the molten pool, leading to wall failure. The time needed for fuel penetration into the sodium-filled gap was very short (less than 1 second after the pool formation). The result suggests that molten core materials formed in hypothetical LMFBR core disruptive accidents have a certain potential to destroy SS-wall boundaries early in the accident phase, thereby providing fuel escape paths from the core region. The early establishment of such fuel escape paths is regarded as a favorable characteristic in eliminating the possibility of severe re-criticality events.

Journal Articles

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

Motojima, Osamu*; Yamada, Hiroshi*; Komori, Akio*; Oyabu, Nobuyoshi*; Muto, Takashi*; Kaneko, Osamu*; Kawahata, Kazuo*; Mito, Toshiyuki*; Ida, Katsumi*; Imagawa, Shinsaku*; et al.

Nuclear Fusion, 47(10), p.S668 - S676, 2007/10

 Times Cited Count:34 Percentile:73.71(Physics, Fluids & Plasmas)

The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5$$times$$10$$^{20}$$ m$$^{-3}$$, which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high-beta and long pulse.

Journal Articles

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the large helical device

Motojima, Osamu*; Yamada, Hiroshi*; Komori, Akio*; Oyabu, Nobuyoshi*; Kaneko, Osamu*; Kawahata, Kazuo*; Mito, Toshiyuki*; Muto, Takashi*; Ida, Katsumi*; Imagawa, Shinsaku*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 12 Pages, 2007/03

The performance of net-current free Heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fueling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an Internal Diffusion Barrier (IDB) by combination of efficient pumping of the local island divertor function and core fueling by pellet injection has realized a super dense core as high as 5$$times$$10$$^{20}$$m$$^{-3}$$, which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5 % and a discharge duration of 54-min. with a total input energy of 1.6 GJ (490 kW in average) are also highlighted. The progress of LHD experiments in these two years is overviewed with highlighting IDB, high $$beta$$ and long pulse.

Journal Articles

The Eagle project to eliminate the recriticality issue of fast reactors; Progress and results of in-pile tests

Konishi, Kensuke; Kubo, Shigenobu*; Sato, Ikken; Koyama, Kazuya*; Toyooka, Junichi; Kamiyama, Kenji; Kotake, Shoji*; Vurim, A. D.*; Gaidaichuk, V. A.*; Pakhnits, A. V.*; et al.

Proceedings of 5th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-5), p.465 - 471, 2006/11

no abstracts in English

Journal Articles

Magnetic field measurements, 3D field calculation and heat measurements of a prototype thick septum magnet for 3 GeV rapid cycling synchrotron of J-PARC

Watanabe, Masao; Irie, Yoshiro; Kamiya, Junichiro; Shimada, Taihei; Takayanagi, Tomohiro; Suzuki, Hiromitsu; Watanabe, Yasuhiro; Kawakubo, Toshimichi*

IEEE Transactions on Applied Superconductivity, 16(2), p.1354 - 1357, 2006/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Septum magnets used in the injection and extraction section of the 3 GeV rapid cycling synchrotron of the J-PARC require large aperture for low-loss operations of high intensity beam, protection against the high radiation and the high durability to avoid the maintenance after the high activation. A prototype septum magnet was constructed. Magnetic fields in the gap of the core and leakage field outside of the magnetic shield were measured by a Hall device probe. The experimental results were compared with the 3D calculation by TOSCA. The leakage field of the measurements is larger than the one of the model. After we made a more detailed model, it cleared that many bolt holes which fasten a return yoke narrow the effective sectional area and thus reduce the permeability at the return yoke, making the leakage field larger. Because the thickness of the return yoke is not sufficient, magnetic flux density approaches saturation easily. Moreover, we discuss about the results of heat measurements of the magnet and efficiency of water cooling.

Journal Articles

Design of thick septa magnets based on 3D field calculation for the 3 GeV rapid cycling synchrotron of J-PARC

Watanabe, Masao; Irie, Yoshiro; Kamiya, Junichiro; Shimada, Taihei; Takayanagi, Tomohiro; Fujimori, Hiroshi*; Igarashi, Susumu*; Kawakubo, Toshimichi*; Nakayama, Hisayoshi*

IEEE Transactions on Applied Superconductivity, 16(2), p.1350 - 1353, 2006/06

 Times Cited Count:2 Percentile:18.89(Engineering, Electrical & Electronic)

Thick septa are used in the injection and extraction section of the 3 GeV rapid cycling synchrotron of the J-PARC. We have been designing seven thick septum magnets, two for injection, two for beam dump and three for extraction, respectively. These septa require low-loss operations. For the mechanical stability they are operated by direct current. The yoke is made of the soft-iron block. We have been designing them by using the three-dimensional magnet static field calculation code, TOSCA. In this presentation, we discuss about magnetic field flatness in the gap and effects of the leakage fields in the synchrotron.

Journal Articles

Kicker magnet system of the RCS in J-PARC

Kamiya, Junichiro; Takayanagi, Tomohiro; Kawakubo, Toshimichi*; Murasugi, Shigeru*; Nakamura, Eiji*

IEEE Transactions on Applied Superconductivity, 16(2), p.168 - 171, 2006/06

 Times Cited Count:5 Percentile:29.26(Engineering, Electrical & Electronic)

The kicker magnets are installed in the extraction section of the RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Research Complex) facility. They extract the 3GeV proton beam to a downstream beam transport line. In order to achieve 1MW beam power, kicker is required to have a wide aperture, UHV (ultra-high vacuum) in its chamber, and uniformity of magnetic field. In this paper, we will introduce the specification of the extraction kicker system in the RCS, and report countermeasure against the technical challenge described above.

Journal Articles

Design of the injection bump system of the 3-GeV RCS in J-PARC

Takayanagi, Tomohiro; Kamiya, Junichiro; Watanabe, Masao; Yamazaki, Yoshishige; Irie, Yoshiro; Kishiro, Junichi; Sakai, Izumi*; Kawakubo, Toshimichi*

IEEE Transactions on Applied Superconductivity, 16(2), p.1358 - 1361, 2006/06

 Times Cited Count:16 Percentile:60.93(Engineering, Electrical & Electronic)

The injection bump system of the 3-GeV RCS in J-PARC consists of the pulse bending magnets for the injection bump orbit, which are four horizontal bending magnets (shift bump), four horizontal painting magnets (h-paint bump), and two vertical painting magnets (v-paint bump). In this paper, the design of the magnets and power supply of the injection bump system are reported.

Journal Articles

Design of the shift bump magnets for the beam injection of the 3-GeV RCS in J-PARC

Takayanagi, Tomohiro; Kamiya, Junichiro; Watanabe, Masao; Ueno, Tomoaki*; Yamazaki, Yoshishige; Irie, Yoshiro; Kishiro, Junichi; Sakai, Izumi*; Kawakubo, Toshimichi*; Tounosu, Shigeki*; et al.

IEEE Transactions on Applied Superconductivity, 16(2), p.1366 - 1369, 2006/06

 Times Cited Count:8 Percentile:43.78(Engineering, Electrical & Electronic)

The injection system of the 3-GeV RCS in J-PARC is composed of four main orbit bump magnets (shift bump) to merge the injection beam with the circulating beam. The magnetic field design and the structural analysis of the shift bump magnets have been performed using 3D magnetic and mechanical codes. In this paper, the design of the bending magnets is reported.

Journal Articles

The Result of medium scale in-pile experiment conducted under the EAGLE-project

Konishi, Kensuke; Toyooka, Junichi; Kamiyama, Kenji; Sato, Ikken; Kubo, Shigenobu*; Kotake, Shoji*; Koyama, Kazuya*; Vurim, A. D.*; Gaidaichuk, V. A.*; Pakhnits, A. V.*; et al.

Proceedings of Technical Meeting on Severe Accident and Accident Management (CD-ROM), 16 Pages, 2006/03

no abstracts in English

47 (Records 1-20 displayed on this page)