Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Characterizing the permeability of drillhole core samples of Toki granite, central Japan to identify factors influencing rock-matrix permeability

Kubo, Taiki*; Matsuda, Norihiro*; Kashiwaya, Koki*; Koike, Katsuaki*; Ishibashi, Masayuki; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Sasao, Eiji; Lanyon, G. W.*

Engineering Geology, 259, p.105163_1 - 105163_15, 2019/09

 Times Cited Count:11 Percentile:54.53(Engineering, Geological)

Rock matrix permeability is mainly controlled by microcracks. This study aims to identify the factors influencing the permeability of the Toki granite, central Japan. Permeability of core samples, measured by a gas permeameter, largely increases in the fault and fracture zones. Although a significant correlation is identified between permeability and P-wave velocity, this correlation is enhanced by classifying the samples into two groups by the Mn/Fe concentration ratio. Thus, lithofacies is another control factor for permeability due to the difference in mineral composition. Moreover, permeability shows significant negative and positive correlations with Si and Ca concentrations, respectively. These concentrations are probably affected by dissolution of silicate minerals and calcite generation in the hydrothermal alteration process. Therefore, a combination of hydrothermal alteration and strong faulting are the predominant processes for controlling permeability.

Journal Articles

3D geostatistical modeling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution

Koike, Katsuaki*; Kubo, Taiki*; Liu, C.*; Masoud, A.*; Amano, Kenji; Kurihara, Arata*; Matsuoka, Toshiyuki; Lanyon, B.*

Tectonophysics, 660, p.1 - 16, 2015/10

 Times Cited Count:26 Percentile:65.77(Geochemistry & Geophysics)

This study integrates 3D models of rock fractures from different sources and hydraulic properties aimed at identifying relationships between fractures and permeability. A geostatistical method (GEOFRAC) that can incorporate orientations of sampled data was applied to 50,900 borehole fractures for spatial modeling of fractures over a 12 km by 8 km area, to a depth of 1.5 km. GEOFRAC produced a plausible 3D fracture model, in that the orientations of simulated fractures correspond to those of the sample data and the continuous fractures appeared near a known fault. Small-scale fracture distributions with dominant orientations were also characterized around the two shafts using fracture data from the shaft walls. By integrating the 3D model of hydraulic conductivity using sequential Gaussian simulation with the GEOFRAC fractures from the borehole data, the fracture sizes and directions that strongly affect permeable features were identified.

Journal Articles

3D hydraulic conductivity modeling of fractured granitic body using geostatistical techniques and its application to regional groundwater flow analysis

Kubo, Taiki*; Koike, Katsuaki*; Liu, C.*; Kurihara, Arata*; Matsuoka, Toshiyuki

Chigaku Zasshi, 122(1), p.139 - 158, 2013/03

Numerical simulations have been the most effective method for estimating flow pattern, flux, and flow velocity of the groundwater to precisely characterize large-scale groundwater systems. Spatial modeling of the 3D distribution of hydraulic conductivity over a study area is indispensable to obtain accurate simulation results. However, such spatial modeling is difficult in most cases due to the limitations of hydraulic conductivity data in terms of their volume and location. To overcome these problems and establish an advanced technique, we adopt geostatistics and combine a fracture distribution model with measured conductivity data, selecting the Tono area situated in Gifu Prefecture, central Japan for the field study. The size of the main target area covers 12 km (E-W) by 8 km (N-S), with a depth range of 1.5 km, and it is chiefly underlain by Cretaceous granite. Because the distribution of 395 hydraulic test data acquired along the 25 deep boreholes was biased, the data values were compared to the dimensions of simulated fractures using GEOFRAC. As a result, a positive correlation was identified. Using a regression equation for the correlation, hydraulic conductivity values were assigned to every simulated fracture. Then, a sequential Gaussian simulation (SGS) was applied to construct a 3D spatial model of hydraulic conductivity using those assumed values and actual test data. The plausibility of the resulting model was confirmed through the continuity of high and low permeable zones. The next step is a groundwater flow simulation using MODFLOW and the model. The simulation results were regarded to be appropriate because distribution of hydraulic head, locations of major discharge points, and anisotropy of hydraulic behavior of the Tsukiyoshi fault correspond to the results of observations.

Journal Articles

Geostatistic analysis for groundwater flow and hydraulic parameters in deep granitic body

Kubo, Taiki*; Koike, Katsuaki*; Kurihara, Arata*; Matsuoka, Toshiyuki

Heisei-23 Nendo (2011 Nen) Shigen, Sozai Gakkai Shuki Taikai Koenshu, p.369 - 370, 2011/09

no abstracts in English

Oral presentation

Dynamic and static structure factor for Staphylococcal Nuclease measured by neutron scattering

Endo, Hitoshi; Tominaga, Taiki; Takata, Shinichi; Matsumoto, Atsushi; Iwase, Hiroki*; Kamikubo, Hironari*; Kataoka, Mikio

no journal, , 

The dynamic and static structure factors for Staphylococcal Nuclease (SNase), which is a nucleolytic enzyme derived from Staphylococcus aureus, were evaluated by neutron spin echo (NSE)and small-angle neutron scattering (SANS) experiments. The SANS experiment was performed with TAIKAN (BL15) time-of-flight diffractometer at J-PARC/MLF, and we could obtain the static structure factors with wide Q range (0.2 $$<$$ Q[1/$AA] $<$$ 2). The NSE measurement was performed with IN15 spectrometer at ILL. Grenoble, which enabled us to obtain intermediate scattering functions over 200 nanoseconds. The effects of hydration and internal motions were considered.

6 (Records 1-6 displayed on this page)
  • 1