Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nagasumi, Satoru; Hasegawa, Toshinari; Nakagawa, Shigeaki; Kubo, Shinji; Iigaki, Kazuhiko; Shinohara, Masanori; Saikusa, Akio; Nojiri, Naoki; Saito, Kenji; Furusawa, Takayuki; et al.
JAEA-Research 2025-005, 23 Pages, 2025/07
A safety demonstration test under abnormal operating conditions using the HTTR (High Temperature Engineering Test Reactor) was conducted to demonstrate safety features of the HTGRs (High Temperature Gas-cooled Reactors). Under a simulation of a control rod shutdown failure, all primary helium gas circulators were intentionally stopped during a steady-state operation at 100% reactor thermal power (30 MW), temporal changes of the reactor power and temperatures around the reactor pressure vessel (RPV) were obtained after the complete loss of forced heat removal from the reactor core. After the event (primary coolant flow stopped), the reactor power quickly decreased due to the negative reactivity feedback associated with the core temperature rise, and then the reactor power spontaneously shifted to a stable state of low power (about 1.2%) even after a recriticality. Heat dissipation from RPV surface to a surrounding vessel cooling system (water-cooled panels) ensured the amount of heat removal required to maintain the reactor temperature constant in the low power state. In this way, the transition from the event occurrence to the stable and safety state, i.e., inherent safety features of HTGRs, were demonstrated in the case of core forced cooling loss without active shutdown operations.
Chiu, I.-H.; Osawa, Takahito; Ninomiya, Kazuhiko*; Takeda, Shinichiro*; Takahashi, Tadayuki*; Katsuragawa, Miho*; Watanabe, Shin*; Kubo, Kenya*; Saito, Tsutomu*; Mizumoto, Kazumi*; et al.
npj Heritage Science (Internet), 13, p.154_1 - 154_9, 2025/05
Tanizaki, Shiho*; Kubo, Tomohiro*; Bito, Yosuke*; Mori, Shigeki*; Aoki, Hiroyuki; Sato, Kotaro*
RSC Sustainability (Internet), 3(4), p.1714 - 1720, 2025/04
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Nagakubo, Azusa; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; et al.
JAEA-Technology 2024-021, 232 Pages, 2025/03
The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011, caused a tsunami that led to the TEPCO's Fukushima Daiichi Nuclear Power Station (FDNPS) accident, releasing a large amount of radioactive material into the surrounding environment. Since the accident, Aerial Radiation Monitoring (ARM) has been used to quickly and widely measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) has continuously conducted ARM around FDNPS using manned and unmanned helicopters. This report summarizes the monitoring results for fiscal year 2023, evaluates changes in dose rate from past results, and discusses the factors contributing to these changes. Additionally, an analysis considering terrain undulation was conducted to improve accuracy for converting ARM data into dose rate. Furthermore, a method to discriminate airborne radon progeny was applied for ARM results to evaluate its impact. Moreover, to perform wide-area monitoring more efficiently, we advanced the development of unmanned airplane monitoring technology.
Nozaki, Yukio*; Sukegawa, Hiroaki*; Watanabe, Shinichi*; Yunoki, Seiji*; Horaguchi, Taisuke*; Nakayama, Hayato*; Yamanoi, Kazuto*; Wen, Z.*; He, C.*; Song, J.*; et al.
Science and Technology of Advanced Materials, 26(1), p.2428153_1 - 2428153_39, 2025/02
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)
Sr/
Y inside the Fukushima Daiichi Nuclear Power Station Unit 3 reactor building using a liquid light guide Cherenkov counterTerasaka, Yuta; Sato, Yuki; Furuta, Yoshihiro*; Kubo, Shin*; Ichiba, Yuta*
Nuclear Instruments and Methods in Physics Research A, 1070, Part 2 , p.170021_1 - 170021_9, 2025/01
Times Cited Count:1 Percentile:39.40(Instruments & Instrumentation)Sugimoto, Chihiro; Myagmarjav, O.; Tanaka, Nobuyuki; Noguchi, Hiroki; Takegami, Hiroaki; Kubo, Shinji
International Journal of Hydrogen Energy, 95, p.98 - 107, 2024/12
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Yamano, Hidemasa; Emura, Yuki; Takai, Toshihide; Kubo, Shigenobu; Quaini, A.*; Fossati, P.*; Delacroix, J.*; Journeau, C.*
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
This report mainly introduces trends in fast reactor development in Japan in addition to introducing overseas development trends for major developing countries. The paper describes major severe accident study results focusing on kinetics of interaction in core material mixtures, physical properties of core material mixtures, high temperature thermodynamic data for the uranium oxide (UO
)-iron (Fe)-boron carbide (B
C) system, experimental studies on B
C-stainless steel (SS) kinetics and B
C-SS eutectic material relocation (freezing), and B
C-SS eutectic and kinetics models for severe accident code systems,
Kamide, Hideki; Asayama, Tai; Wakai, Takashi; Ezure, Toshiki; Uchibori, Akihiro; Kubo, Shigenobu; Takeuchi, Masayuki
Nuclear Engineering and Design, 421, p.113062_1 - 113062_10, 2024/05
Times Cited Count:3 Percentile:76.03(Nuclear Science & Technology)A sodium cooled fast reactor (SFR) is one of the most relevant and decarbonized energy supply system with higher sustainability on natural resources, footprint, and waste management. It was planned in a strategic roadmap of fast reactor decided by Inter-Ministerial Council for Nuclear Power Japan in 2022 to start a conceptual design of a demonstration reactor from 2024 with a background of accumulated knowledge and experiences of SFR development. For example, a design and lifecycle simulation/evaluation system named ARKADIA has been developed to accelerate such design works. It will enable to take into account plant lifecycle, e.g., operation and maintenance, to the plant design and optimize it based on simulations and knowledgebase. This paper shows research progresses of ARKADIA, safety design and evaluations, codes and standards, fuel cycle, and SFR development projects in Japan.
Sato, Tatsuhiko; Kubo, Yuki*
Purazuma, Kaku Yugo Gakkai-Shi, 100(5), p.218 - 223, 2024/05
One of the space weather hazards is the sudden occurrence of cosmic radiation exposure due to high-energy protons associated with massive solar flares. This paper focuses on cosmic radiation exposure for airline crew members, explaining the mechanisms and current regulations. Additionally, it introduces an overview of the recently developed Aircraft Radiation Exposure Warning System (WASAVIES) in Japan.
Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.
JAEA-Technology 2023-027, 146 Pages, 2024/03
By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been applied as a method to quickly and extensively measure the distribution of radiation. Japan Atomic Energy Agency (JAEA) has continuously conducted ARM via manned helicopter around FDNPS. In this report, we summarize the results of the ARM around FDNPS in the fiscal year 2022, evaluate the changes of ambient dose rates and other parameters based on the comparison to the past ARM results, and discuss the causes of such changes. In order to contribute to improve the accuracy of ambient dose rate conversion, we analyzed the ARM data taking into account undulating topography, and evaluated the effect of this method. Furthermore, the effect of radon progenies in the air on the ARM was evaluated by applying the discrimination method to the measurement results.
Wada, Yuki*; Kamogawa, Masashi*; Kubo, Mamoru*; Enoto, Teruaki*; Hayashi, Shugo*; Sawano, Tatsuya*; Yonetoku, Daisuke*; Tsuchiya, Harufumi
Journal of Geophysical Research; Atmospheres, 128(21), p.e2023JD039354_1 - e2023JD039354_20, 2023/11
Times Cited Count:2 Percentile:19.91(Meteorology & Atmospheric Sciences)Kubo, Kotaro; Zheng, X.; Tanaka, Yoichi; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Proceedings of the Institution of Mechanical Engineers, Part O; Journal of Risk and Reliability, 237(5), p.947 - 957, 2023/10
Times Cited Count:5 Percentile:50.13(Engineering, Multidisciplinary)Probabilistic risk assessment (PRA) is a method used to assess the risks associated with large and complex systems. However, the timing at which nuclear power plant structures, systems, and components are damaged is difficult to estimate if the risk of an external event is evaluated using conventional PRA based on event trees and fault trees. A methodology coupling thermal-hydraulic analysis with external event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID) is therefore proposed to overcome this limitation. A flood propagation model based on Bernoulli's theorem was applied to represent internal flooding in the turbine building of the pressurized water reactor. Uncertainties were also taken into account, including the flow rate of the floodwater source and the failure criteria for the mitigation systems. The simulated recovery actions included the operator isolating the floodwater source and using a drainage pump; these actions were modeled using several simplifications. Overall, the results indicate that combining isolation and drainage can reduce the conditional core damage probability upon the occurrence of flooding by approximately 90%.
Saito, Takumi*; Motokawa, Ryuhei; Okubo, Takahiro*; Miura, Daisuke*; Kumada, Takayuki
Environmental Science & Technology, 57(26), p.9802 - 9810, 2023/07
Times Cited Count:2 Percentile:15.33(Engineering, Environmental)Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.
ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04
Times Cited Count:7 Percentile:68.45(Chemistry, Multidisciplinary)The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.
Fe
intermetallic compoundCao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:5 Percentile:40.70(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in Ho
Fe
on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Yokoyama, Sumi*; Hamada, Nobuyuki*; Tsujimura, Norio; Kunugita, Naoki*; Nishida, Kazutaka*; Ezaki, Iwao*; Kato, Masahiro*; Okubo, Hideki*
International Journal of Radiation Biology, 99(4), p.604 - 619, 2023/04
Times Cited Count:6 Percentile:41.78(Biology)In April 2011, the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens. Such a new occupational lens dose limit has thus far been implemented in many countries, and there are extensive discussions toward its regulatory implementation in other countries. In Japan, discussions in the Japan Health Physics Society (JHPS) began in April 2013 and in Radiation Council in July 2017, and the new occupational lens dose limit was implemented into regulation in April 2021. To share our experience, we have published a series of papers summarizing situations in Japan: the first paper based on information available by early 2017, and the second paper by early 2019. This paper (our third paper of this series) aims to review updated information available by mid-2022, such as regarding regulatory implementation of the new occupational lens dose limit, recent discussions by relevant ministries based on the opinion from the council, establishment process of safety and health management systems, the JHPS guidelines on lens dose monitoring and radiation safety, voluntary countermeasures of the licensees, development of lens dose calibration method, and recent studies on exposure of the lens in nuclear workers and biological effect on the lens.
Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Kamide, Hideki
Handbook of Generation IV Nuclear Reactors, Second Edition, p.173 - 194, 2023/03
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. JAEA contributes to Chapter 5; Sodium-cooled Fast Reactors (SFRs) and Chapter 12; Generation-IV Sodium-cooled Fast Reactor (SFR) concepts in Japan. Major characteristics and current technology developments including safety enhancement were described in Chapter 5. Chapter 12 shows design activities of SFR. Innovative technology developments, and update of the Japan sodium-cooled fast reactor design with lessons learned from the TEPCO Fukushima Daiichi NPP accident.
Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Urabe, Yoshimi*; et al.
JAEA-Technology 2022-027, 148 Pages, 2023/02
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been conducted around FDNPS. The results of the airborne radiation monitoring and the evaluation for temporal change of dose rate in the fiscal 2021 were summarized in this report. Analysis considering topographical effects was applied to the result of the airborne monitoring to improve the accuracy of the conventional method. In addition, technique for discriminating gamma rays from the ground and those from the airborne Rn-progenies was also utilized to evaluate their effect on airborne radiation monitoring.
Mamiya, Hiroaki*; Oba, Yojiro; Hiroi, Kosuke; Miyatake, Takayuki*; Gautam, R.*; Sepehri-Amin, H.*; Okubo, Tadakatsu*
IEEE Magnetics Letters, 14, p.7100105_1 - 7100105_5, 2023/02
Times Cited Count:2 Percentile:22.67(Engineering, Electrical & Electronic)