Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sakamoto, Kan*; Adachi, Mika*; Tokushima, Kazuyuki*; Aomi, Masaki*; Shibata, Hiroki; Nagae, Yuji; Kurata, Masaki
Zirconium in the Nuclear Industry; 20th International Symposium (ASTM STP 1645), p.411 - 432, 2023/11
Yamashita, Susumu; Sato, Takumi; Nagae, Yuji; Kurata, Masaki; Yoshida, Hiroyuki
Journal of Nuclear Science and Technology, 60(9), p.1029 - 1045, 2023/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Shirasu, Noriko; Sato, Takumi; Suzuki, Akihiro*; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Science and Technology, 60(6), p.697 - 714, 2023/06
Times Cited Count:2 Percentile:65.72(Nuclear Science & Technology)Interaction tests between UO and Zr were performed at precisely controlled high temperatures between 1840 and 2000 C to understand the interaction mechanism in detail. A Zr rod was inserted in a UO crucible and then heat-treated at a fixed temperature in Ar-gas flow for 10 min. After heating in the range of 1890 to 1930 C, the Zr rod was deformed to a round shape, in which the post-analysis detected the significant diffusion of U into the Zr region and the formation of a dominant -Zr(O) matrix and a small amount of U-Zr-O precipitates. The abrupt progress of liquefaction was observed in the sample heated at around 1940 C or higher. The higher oxygen concentration in the -Zr(O) matrix suppressed the liquefaction progress, due to the variation in the equilibrium state. The U-Zr-O melt formation progressed by the selective dissolution of Zr from the matrix, and the selective diffusion of U could occur via the U-Zr-O melt.
Sato, Takumi; Nagae, Yuji; Kurata, Masaki; Quaini, A.*; Guneau, C.*
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 79, p.102481_1 - 102481_11, 2022/12
Times Cited Count:0 Percentile:0.00(Thermodynamics)Pshenichnikov, A.; Kurata, Masaki; Nagae, Yuji
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10
The CLADS-MADE-04 is the next test in the series aiming at understanding of the melt propagation behaviour in the lower core region. In this contribution, recent results of the post-test analysis including microstructure of metallic debris investigated by Electron Probe Micro Analyzer (EPMA) are discussed. During the test, melting of the control blade happened with sudden wave of strong heat release relatively slowly (several cm/min) spread from the hottest area downwards along the degrading control blade and channel box consuming the walls made of Zircaloy-4. A significant damage happened with the sample supporting plate as well. The investigation of microstructure of such metallic debris would allow understanding of a mechanism of enhanced local core degradation. The nature of strong heat release and possibility of spreading to the surrounding materials is to be confirmed after thorough phase identification by EPMA. The difference between Fe-B eutectic debris and Zr-Fe eutectic debris will be outlined. It is especially important for understanding of the lower core plate melt-through and a possibility of a Zr-Fe molten material progression into the lower plenum.
Ohgi, Hiroshi; Nagae, Yuji; Kurata, Masaki
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10
Kurata, Masaki; Okuzumi, Naoaki*; Nakayoshi, Akira; Ikeuchi, Hirotomo; Koyama, Shinichi
Journal of Nuclear Science and Technology, 59(7), p.807 - 834, 2022/07
Times Cited Count:12 Percentile:93.52(Nuclear Science & Technology)Immediately after the 1F-accident, various attempts have been made to evaluate the fuel debris characteristics toward the decommissioning of 1F. The present review outlines those attempts. In the years immediately following the 1F-accident, the knowledge obtained from the 1F-site (especially from the damaged reactors of Units 1, 2 and 3) was extremely limited. The approximate location of fuel debris was investigated by muon tomography, and its characteristics were roughly estimated based on the past findings such as the results of the Three Mile Island-II accident investigation in the United States, which gave us information of prototypical accident scenarios and debris characteristics for pressurized water reactor accident. After that, various internal investigation robots were developed, and from 2017, investigation of the inside of the reactor containment vessel was started using these robots. Consequently, these three units were found to have core damage status and debris distribution that were rather different from what had been expected based on the typical accident scenario of a pressurized water reactor. In parallel, a small amount of U-bearing particle was recovered from the smear samples of these robots. The analysis of these particles is ongoing to get information relevant to fuel debrsi body. Furthermore, international collaboration is ongoing mainly under OECD/NEA, including accident analysis and debris characterization. From now on, one need to further understand 1F-accident scenario and progress debris characterization based on these 1F-site information.
Pshenichnikov, A.; Shibata, Hiroki; Yamashita, Takuya; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Science and Technology, 59(3), p.267 - 291, 2022/03
Times Cited Count:3 Percentile:24.93(Nuclear Science & Technology)Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Proceedings of TopFuel 2021 (Internet), 12 Pages, 2021/10
Pshenichnikov, A.; Kurata, Masaki; Nagae, Yuji
Journal of Nuclear Science and Technology, 58(9), p.1025 - 1037, 2021/09
Times Cited Count:4 Percentile:47.47(Nuclear Science & Technology)Pham, V. H.; Kurata, Masaki; Steinbrueck, M.*
Thermo (Internet), 1(2), p.151 - 167, 2021/09
Koyama, Shinichi; Nakagiri, Toshio; Osaka, Masahiko; Yoshida, Hiroyuki; Kurata, Masaki; Ikeuchi, Hirotomo; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Takano, Masahide; et al.
Hairo, Osensui Taisaku jigyo jimukyoku Homu Peji (Internet), 144 Pages, 2021/08
JAEA performed the subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))" in 2020JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning and Contaminated Water Management.
Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 7 Pages, 2021/08
Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Science and Technology, 58(4), p.416 - 425, 2021/04
Times Cited Count:14 Percentile:83.82(Nuclear Science & Technology)Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Mechanical Engineering Journal (Internet), 7(3), p.19-00503_1 - 19-00503_10, 2020/06
Sudo, Ayako; Meszaros, B.*; Poznyak, I.*; Sato, Takumi; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Materials, 533, p.152093_1 - 152093_8, 2020/05
Times Cited Count:4 Percentile:39.72(Materials Science, Multidisciplinary)Pshenichnikov, A.; Kurata, Masaki; Bottomley, D.; Sato, Ikken; Nagae, Yuji; Yamazaki, Saishun
Journal of Nuclear Science and Technology, 57(4), p.370 - 379, 2020/04
Times Cited Count:14 Percentile:66.98(Nuclear Science & Technology)Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Mechanical Engineering Journal (Internet), 7(2), p.19-00477_1 - 19-00477_8, 2020/04
Pham, V. H.; Nagae, Yuji; Kurata, Masaki; Bottomley, D.; Furumoto, Kenichiro*
Journal of Nuclear Materials, 529, p.151939_1 - 151939_8, 2020/02
Times Cited Count:16 Percentile:85.51(Materials Science, Multidisciplinary)Kurata, Masaki; Osaka, Masahiko; Jacquemain, D.*; Barrachin, M.*; Haste, T.*
Advances in Nuclear Fuel Chemistry, p.555 - 625, 2020/00
The importance of fuel chemistry has been revivaled since Fukushima-Daiichi Nuclear Power Station (FDNPS) accident. The inspection and analysis of damaged three units, which had been operated in March 11, 2011, showed large differences in the accident progression sequence for these units, because operators attempted to prevent or mitigate the accident progression of each unit by all means possible. Characteristics of fuel debris are considered to be largely influenced by the difference in the sequence and, hence, deviated from those predicted from prototypic accident scenarios, which had been mainly identified from the analysis of Three Mile Island-2 (TMI-2) accident and the following sim-tests. For the proper improvement of our knowledge on severe accident (SA), including non-prototypic conditions, one has to start improving the phenomenology of fuel/core degradation and fission product (FP) behavior. Advances in the chemistry is the most essential approach. The present review attempts to focus on the recent updates and remaining concerns after the FDNPS accident.