Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Nagasawa, Kazuyoshi*; Kurihara, Akikazu; Tanaka, Masaaki
JAEA-Research 2022-009, 125 Pages, 2023/01
The design studies of an advanced loop-type sodium-cooled fast reactor (Advanced- SFR) have been carried out by the Japan Atomic Energy Agency (JAEA). At the core outlet, temperature fluctuations occur due to mixing of hot sodium from the fuel assembly with cold sodium from the control rod channels and radial blanket assembly. These temperature fluctuations may cause high cycle thermal fatigue around a bottom of Upper Internal Structure (UIS) located above the core. Therefore, we conducted a water experiment using a 1/3 scale 60 degree sector model that simulated the upper plenum of the advanced loop-type sodium-cooled reactor. And we proposed some countermeasures against large temperature fluctuations that occur at the bottom of the UIS. In this report, we have summarized that the effect of the countermeasure structure to mitigate the temperature fluctuation generated at the bottom of UIS is confirmed, and the Reynolds number dependency of the countermeasure structure and the characteristics of the temperature fluctuation on the control rod surface.
Aizawa, Kosuke; Tsuji, Mitsuyo; Kobayashi, Jun; Kurihara, Akikazu
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 7 Pages, 2022/10
In sodium-cooled fast reactors (SFRs), optimizing the design and operate decay heat removal systems (DHRSs) is important for safety enhancement against severe accidents. Thus, it is required to evaluate the cooling capability of DHRSs including the natural circulation behavior inside the reactor vessel during heat-removal phase that the fuel debris relocated in the reactor vessel is cooled by DHRSs. In this study, the experiments which simultaneously operations of the dipped-type DHX and the penetrated-type DHX were conducted to investigate the effect of operating multiple decay heat removal system on the natural circulation behavior in the reactor vessel. After achieving the stable conditions by operating the dipped-type DHX or the penetrated-type DHX, the other DHX was operated and the transient behavior was clarified by the temperature measurements. The clear temperature rise in the reactor vessel was confirmed by operating the penetrated-type DHX as second DHX operation under the condition of the dipped-type DHX operation at the beginning and the high heater power of fuel debris on the core catcher. Therefore, it was confirmed that the inhibition of the cooling for the decay heat occurred by operating multiple DHXs.
Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 6 Pages, 2022/10
In sodium-cooled fast reactors (SFRs), decay heat removal after a core disruptive accident (CDA) is an important issue for the safety enhancement. Therefore, water experiments using a 1/10 scale experimental apparatus (PHEASANT) that simulates the reactor vessel of an SFR are conducted to investigate the natural circulation phenomena in the reactor vessel. In this study, experiments under the operation of the dipped-type DHX were conducted to investigate the effect of the heat generation ratio between the fuel debris on the core catcher in lower plenum and the reactor core remnant on the natural circulation behavior in the reactor vessel. The temperature distribution and the velocity distribution were measured under two heat generation conditions. Thus, the effect of the heat generation ratio between the fuel debris in the lower plenum and the reactor core remnant on the natural circulation behavior was quantitatively grasped under the dipped-type DHX operating conditions.
Aizawa, Kosuke; Tsuji, Mitsuyo; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*; Nakane, Shigeru*; Ishida, Katsuji*
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 10 Pages, 2022/04
In sodium-cooled fast reactors (SFRs), optimizing the design and operate decay heat removal systems (DHRSs) is important for safety enhancement against severe accidents that could lead to core melting. The natural circulation phenomena in a reactor vessel during operating a DHRS were clarified by conducting water experiments using a 1:10 scale experimental facility (PHEASANT) simulating the reactor vessel of loop-type SFRs. In this study, we investigated the natural circulation phenomena under conditions of operating the dipped-type DHX and RVACS using the results of temperature and particle image velocimetry (PIV) measurements, respectively. Furthermore, the effects of temperature fluctuation on the PIV measurement were quantitatively evaluated.
Hiyama, Tomoyuki; Aizawa, Kosuke; Nishimura, Masahiro; Kurihara, Akikazu
JAEA-Research 2021-009, 29 Pages, 2021/11
In sodium-cooled fast reactors, high burnup of fuel is required for practical use. It is important to predict and evaluate the flow behavior in a fuel assembly because there is a concern that the heat removal capacity of the fuel assembly with high burnup will be locally reduced due to swirling and thermal deformation of the fuel rods. In this study, flow field measurement tests were conducted using a 3-pin bundle system test specimen for the purpose of elucidating the phenomenon and constructing a verification database for thermal hydraulics analysis code. The viewpoints of the experiment for elucidating the phenomenon are as follows; (1) Overall flow behavior in the subchannel including near the wrapping wire, (2) Relationship between Reynolds number including laminar flow region and flow field, and (3) Evaluation of the effect of the presence or absence of wrapping wire on the flow field. As a result, detailed flow field data in the subchannel was obtained by PIV measurement. It was found that when the wrapping wire crossed the subchannel, the flow occurred toward adjacent subchannel and the flow occurred that follows the winding direction of the wrapping wire. It was confirmed that the tendency of the flow velocity distribution of the Reynolds number in the laminar flow region is significantly different from that of the transition region and the turbulent region under the condition. The test was conducted using a same 3-pin bundle system without the wrapping wire, and it was confirmed that mixing by the wrapping wire occurred even in the laminar flow region.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki
Hozengaku, 20(3), p.89 - 96, 2021/10
Hot sodium from the fuel assembly can mix with cold sodium from the control rod (CR) channel and the blanket assemblies at the bottom plate of the Upper Internal Structure (UIS) of Advanced-SFR. Temperature fluctuation due to mixing of the fluids at different temperature between the core outlet and cold channel may cause high cycle thermal fatigue on the structure around the bottom of UIS. A water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of UIS. We focused on the temperature fluctuations near the primary and backup control rod channels, and studied the countermeasure structure to mitigate the temperature fluctuation through temperature distribution and flow velocity distribution measurements. As a result, effectiveness of the countermeasure to mitigate the temperature fluctuation intensity was confirmed.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki
Hozengaku, 20(3), p.97 - 101, 2021/10
Focusing on the thermal striping phenomena that occurs at a bottom of the internal structure of an advanced sodium-cooled fast reactor (Advanced-SFR) that has been designed by the Japan Atomic Energy Agency, a water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of Upper Internal Structure (UIS). In the previous paper, we reported the effect of measures to mitigate temperature fluctuations around the control rod channels. In this paper, the same test section was used, and a water experiment was conducted to obtain the characteristics of temperature fluctuations around the radial blanket fuel assembly. And the shape of the Core Instrumentation Support Plate (CIP) was modified, and it was confirmed that it was highly effective in alleviating temperature fluctuations around the radial blanket fuel assembly.
Aizawa, Kosuke; Hiyama, Tomoyuki; Nishimura, Masahiro; Kurihara, Akikazu; Ishida, Katsuji*
Mechanical Engineering Journal (Internet), 8(4), p.20-00547_1 - 20-00547_11, 2021/08
A sodium-cooled fast reactor has been designed to attain a high burn-up core in commercialized fast reactor cycle systems. The sodium-cooled fast reactor adopts a wire spacer between fuel pins. The wire spacer performs functions of securing the coolant channel and the mixing between subchannels. In high burn-up fuel subassemblies, the fuel pin deformation due to swelling and thermal bowing may decrease the local flow velocity in the subassembly and influence the heat removal capability. Therefore, understanding the flow field in a wire-wrapped pin bundle is important. This study performed particle image velocimetry (PIV) measurements using a wire-wrapped three-pin bundle water model to grasp the flow field in the subchannel under conditions, including the laminar to turbulent regions. In the region away from the wrapping wire, the maximum flow velocity was increased by decreasing the Re number. Accordingly, the PIV measurements using the three-pin bundle geometry without the wrapping wire were also conducted to understand the effect of the wrapping wires on the flow field in the subchannel. The results confirmed that the mixing due to the wrapping wire occurred, even in the laminar condition. These experimental results are useful not only for understanding the pin bundle thermal hydraulics, but also for the code validation.
Sugimoto, Taro*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Kurihara, Akikazu; Takata, Takashi; Ohshima, Hiroyuki
Nuclear Engineering and Design, 380, p.111306_1 - 111306_11, 2021/08
Times Cited Count:3 Percentile:62.1(Nuclear Science & Technology)Liquid droplet entrainment by a high-speed gas jet is a key phenomenon for evaluation of sodium-water reaction. In this study, a visualization experiment for liquid droplet entrainment by an air jet in a water pool by using frame-straddling method was carried for development of an entrainment model in a sodium-water reaction analysis code. This experiment successfully provided clear images that captured generation and movement of droplets. Droplet diameter and moving speed were obtained at different locations and gas jet velocities from image processing. The measured data contributes phenomena elucidation and model development.
Umeda, Ryota; Kondo, Toshiki; Kikuchi, Shin; Kurihara, Akikazu
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 9 Pages, 2021/08
In this study, in order to obtain the fundamental information on aerosol transport behavior between cells, the Multiple cells with Expandable connecting pipe Test facility (MET) was manufactured and preliminary experiments were performed. In the preliminary experiments, simulated particles were used in a test system with two cells connected horizontally or vertically, and their transport behavior was measured. As a result, it was possible to confirm the behavior of the simulated particles transporting to the horizontal or vertical cells from the results such as images and sedimentation data.
Saito, Masafumi*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Kurihara, Akikazu; Takata, Takashi*; Ohshima, Hiroyuki
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 7 Pages, 2021/08
In order to provide the data for validation and improvement of the sodium-water reaction analysis code, a visualization experiment on liquid droplet entrainment in a high-pressure air jet submerged in a water pool was conducted. Diameter and velocity of entrained liquid droplets were successfully measured. The effect of a nozzle shape was elucidated.
Akimoto, Yuta; Ezure, Toshiki; Onojima, Takamitsu; Kurihara, Akikazu
Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2021/07
In order to improve the reliability of the experimental database for a decay heat removal system in sodium-cooled fast reactors, uncertainty evaluation of temperature measurement data in thermal hydraulic experiments using sodium as the working fluid was investigated using the sodium experimental facility PLANDTL-2. In this study, an evaluation method of uncertainty due to the influence of the heat loss from the test section and the uncertainty of reference thermocouples was proposed for the relative calibration of thermocouples fixed inside the test section of PLANDTL-2. Moreover, the method has also been applied to the temperature measurement data of PLANDTL-2 experiment, and the confidence interval was evaluated to confirm the applicability of the method.
Umeda, Ryota; Shimoyama, Kazuhito; Kurihara, Akikazu
Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(4), p.234 - 244, 2020/12
Sodium-water reaction caused by failure of the steam generator tube of sodium-cooled fast reactor induce the wastage phenomenon, which has erosive and corrosive feature. In this report, the authors have performed the self-wastage experiments under high sodium temperature condition to evaluate the effect of wastage form/geometry by using two types of initial defect such as the micro fine pinhole and fatigue crack, and water leak rate on self-wastage rate. Based on the consideration of crack type influence, it was confirmed that self-wastage rate did not strongly depend on the initial defect geometry. As a mechanism of the self-plug phenomenon, it is speculated that sodium oxide intervenes and inhibits the progress of self-wastage. The dependence of initial sodium temperature on self-wastage rate was clearly observed, and new self-wastage correlation was derived considering the initial sodium temperature.
Aizawa, Kosuke; Hiyama, Tomoyuki; Nishimura, Masahiro; Kurihara, Akikazu; Ishida, Katsuji*
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 8 Pages, 2020/08
A sodium-cooled fast reactor is designed to attain a high burn-up core in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, the deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the flow velocity distribution in a wire wrapped pin bundle. In this study, the detailed flow velocity distribution in the subchannel has been obtained by PIV (Particle Image Velocimetry) measurement using a wire-wrapped 3-pin bundle water model. Flow velocity conditions in the pin bundle were set from 0.036 m/s ( = 270) to 1.6m/s (
= 13,500). From the PIV results, the maximum flow velocity was increased by decreasing the
number in the region away from the wrapping wire. Moreover, the PIV measurements by using the 3-pin bundle geometry without the wrapping wire were conducted. From the results, the effect of the wrapping wire on the flow field in the subchannel was understood. There experimental results useful not only for understanding of pin bundle thermal hydraulics but also code validation.
Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08
The water experiments using a 1/10 scale experimental apparatus simulating the reactor vessel of SFR were conducted to investigate the natural circulation phenomena in a reactor vessel. In this paper, the natural circulation flow field in the reactor vessel was measured by the Particle Image Velocimetry (PIV) method. The PIV measurement was carried out under the operation of the dipped-type direct heat exchanger (DHX) installed in the upper plenum when 20% of the core fuel fell to the lower plenum and accumulated on the core catcher. From the results of PIV measurement, it was quantitatively confirmed that the upward flow occurred at the center region of the lower and upper plenums. In addition, the downward flows were confirmed near the reactor vessel wall in the upper plenum and through outermost layer of the simulated core in the lower plenum. Moreover, the relationship between the temperature field and the velocity field was investigated in order to understand the natural circulation phenomenon in the reactor vessel. From the above results, it was confirmed that the natural circulation cooling path was established under the dipped-type DHX operation.
Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*
Proceedings of 14th International Symposium on Advanced Science and Technology in Experimental Mechanics (14th ISEM'19) (USB Flash Drive), 4 Pages, 2019/11
The particle image velocimetry (PIV) was measured in scaled-model water experiments simulating a natural circulation flow field in a sodium-cooled fast reactor vessel. The temperature fluctuation in the natural circulation flow field causes the distribution of the refractive index. Thus, the temperature fluctuation affects the uncertainty of the velocity in the PIV measurement. In this study, the authors evaluated the effects of the temperature fluctuation on the PIV measurement in the natural circulation flow field.
Ezure, Toshiki; Onojima, Takamitsu; Tanaka, Masaaki; Kobayashi, Jun; Kurihara, Akikazu; Kameyama, Yuri*
Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.3355 - 3363, 2019/08
Steady-state sodium experiments under the operating conditions of a decay heat removal system (DHRS) were carried out as part of the safety enhancement of sodium-cooled fast reactors using the PLANDTL 2 facility, which has 30 heated channels with electric heaters and 25 no-heated channels as the simulated core. In the experiments, a direct reactor auxiliary cooling system (DRACS) with a dipped type direct heat exchanger (DHX) in the upper plenum was used as the DHRS. This paper reports on the preliminary experimental results of the PLANDTL 2 experiments under the DRACS operating conditions without flow in the primary circuit, including the thermal hydraulic interactions between the upper plenum and the core under the DHX operating conditions and the resulting core cooling behavior from the outside of the multiple rows of the fuel assemblies
Hashidate, Ryuta; Kato, Shoichi; Kurihara, Akikazu
JAEA-Data/Code 2019-005, 117 Pages, 2019/07
SUS316 and SUS321 are used for structural materials of the Fast Breeder Reactors (FBRs), because of excellent high creep strength. This report summarized the mechanical properties data on SUS316 and SUS321 obtained in various tests including the long-term material tests and the material tests in sodium.
Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Kurihara, Akikazu; Hamada, Hirotsugu; Ohshima, Hiroyuki
Journal of Nuclear Science and Technology, 56(2), p.201 - 209, 2019/02
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was developed to expand application range of an existing computer code. Applicability of the method was demonstrated through the numerical analysis of the experiment on water vapor discharging in liquid sodium.
Aizawa, Kosuke; Kobayashi, Jun; Tanaka, Masaaki; Kurihara, Akikazu; Ishida, Katsuji*; Nagasawa, Kazuyoshi*
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 10 Pages, 2018/11
A conceptual design of an advanced loop type sodium cooled reactor has been carried out in the Japan Atomic Energy Agency (JAEA). Temperature fluctuation is caused by mixing of fluids at different temperature from the control rod channels and the core fuel assemblies, high cycle thermal fatigue may arise on the Core Instrument Plane (CIP) at bottom of the Upper Internal Structure (UIS). In JAEA, 1/3-scaled five jets water tests (FIWAT) have been performed in order to investigate thermal striping phenomena around the CIP. In this study, the velocity field was measured in the mixing area between the jet outlet and the bottom of the structure by using particle image velocimetry (PIV) to compare with the temperature fluctuation characteristics.