Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 50

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

PSTEP: Project for solar-terrestrial environment prediction

Kusano, Kanya*; Ichimoto, Kiyoshi*; Ishii, Mamoru*; Miyoshi, Yoshizumi*; Yoden, Shigeo*; Akiyoshi, Hideharu*; Asai, Ayumi*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Goto, Tadanori*; et al.

Earth, Planets and Space (Internet), 73(1), p.159_1 - 159_29, 2021/12

 Times Cited Count:6 Percentile:51.19(Geosciences, Multidisciplinary)

The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.

Journal Articles

Transient ionization of the mesosphere during auroral breakup; Arase satellite and ground-based conjugate observations at Syowa Station

Kataoka, Ryuho*; Nishiyama, Takanori*; Tanaka, Yoshimasa*; Kadokura, Akira*; Uchida, Herbert Akihito*; Ebihara, Yusuke*; Ejiri, Mitsumu*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Sato, Kaoru*; et al.

Earth, Planets and Space (Internet), 71(1), p.9_1 - 9_10, 2019/12

 Times Cited Count:8 Percentile:40.25(Geosciences, Multidisciplinary)

Transient ionization of the mesosphere was detected at around 65 km altitude during the isolated auroral expansion occurred at 2221-2226 UT on June 30, 2017. A general-purpose Monte Carlo particle transport code PHITS suggested that significant ionization is possible in the middle atmosphere due to auroral X-rays from the auroral electrons of $$<$$10 keV.

Journal Articles

Demonstration of $$gamma$$-ray pipe-monitoring capabilities for real-time process monitoring safeguards applications in reprocessing facilities

Rodriguez, D.; Tanigawa, Masafumi; Nishimura, Kazuaki; Mukai, Yasunobu; Nakamura, Hironobu; Kurita, Tsutomu; Takamine, Jun; Suzuki, Satoshi*; Sekine, Megumi; Rossi, F.; et al.

Journal of Nuclear Science and Technology, 55(7), p.792 - 804, 2018/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Nuclear material in reprocessing facilities is safeguarded by random sample verification with additional continuous monitoring applied to solution masses and volume in important tanks to maintain continuity-of-knowledge of process operation. Measuring the unique $$gamma$$ rays of each solution as the material flows through pipes connecting all tanks and process apparatuses could potentially improve process monitoring by verifying the compositions in real time. We tested this $$gamma$$ ray pipe-monitoring method using plutonium-nitrate solution transferred between tanks at the PCDF-TRP. The $$gamma$$ rays were measured using a lanthanum-bromide detector with a list-mode data acquisition system to obtain both time and energy of $$gamma$$-ray. The analysis and results of this measurement demonstrate an ability to determine isotopic composition, process timing, flow rate, and volume of solution flowing through pipes, introducing a viable capability for process monitoring safeguards verification.

Journal Articles

Establishment of a Laboratory for $$gamma$$-ray Spectrometry of Environmental Samples Collected in Fukushima

Saegusa, Jun; Yoda, Tomoyuki; Maeda, Satoshi; Okazaki, Tsutomu; Otani, Shuichi; Yamaguchi, Toshio; Kurita, Yoshiyuki; Hasumi, Atsushi; Yonezawa, Chushiro*; Takeishi, Minoru

Proceedings of 14th International Congress of the International Radiation Protection Association (IRPA-14), Vol.3 (Internet), p.1078 - 1085, 2017/11

After the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency has newly set up a laboratory for radioactivity analysis in Fukushima. At the laboratory, radioactivity concentrations of environmental samples such as soil, water, dust filter, plant, etc., approximately 1,000 samples in a month, are measured with high-resolution $$gamma$$-ray spectrometry systems. The systems employ n-type HPGe detectors from Ortec. Since September 2012, characterization and upgrade of the systems have been performed aimed at enhancing reliability of analysis and convenience of customers. Resolving both systematic and technical issues, the laboratory has been accredited the ISO/IEC 17025 standard as a testing laboratory for radioactivity analysis.

Journal Articles

Survey and countermeasures on radiocesium inflow into a laboratory building for radioactivity analysis

Kurita, Yoshiyuki; Saegusa, Jun; Maeda, Satoshi

Nihon Hoshasen Anzen Kanri Gakkai-Shi, 15(2), p.180 - 185, 2016/11

In 2012, JAEA has established a laboratory in Fukushima-city to implement radioactivity analysis of environmental samples. Key nuclides measured in this laboratory are $$^{134}$$Cs and $$^{137}$$Cs (radiocesium). For the purpose, situation of radiocesium inflow into the laboratory building and its effects were investigated based on high-resolution gamma-spectrometry with germanium detectors. As a result, the surface density of radiocesium in the laboratory was found to be far below the minimum detectable activities of survey instruments routinely used for radiation control purposes.

Journal Articles

Demonstration result of sample assay system equipped alternative He-3 detectors

Tanigawa, Masafumi; Mukai, Yasunobu; Tobita, Hiroshi; Kurata, Noritaka*; Kobayashi, Nozomi*; Takase, Misao*; Makino, Risa; Ozu, Akira; Nakamura, Hironobu; Kurita, Tsutomu; et al.

56th Annual Meeting of the Institute of Nuclear Materials Management (INMM 2015), Vol.1, p.693 - 701, 2016/00

no abstracts in English

Journal Articles

Development of sample assay system equipped with $$^{3}$$He Alternative Neutron Detectors (ASAS), 1; Design and fabrication of ASAS detector

Ozu, Akira; Tobita, Hiroshi; Kureta, Masatoshi; Tanigawa, Masafumi; Mukai, Yasunobu; Nakamichi, Hideo; Nakamura, Hironobu; Kurita, Tsutomu; Seya, Michio

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12

Against the background of the serious shortage of $$^{3}$$He gas, the Japan Atomic Energy Agency (JAEA) has newly developed an alternative ZnS ceramic scintillation neutron detector for the safeguards, with the support of the government (MEXT). A demonstrator of plutonium inventory sample assay system (ASAS) has been also developed as an alternative HLNCC (High Level Neutron Coincidence Counter). The results from numerical simulations using Monte-Carlo code MCNPX showed that the fundamental performances of ASAS equipped with the 24 alternative neutron detectors, such as neutron detection efficiency and die-away time, equal to or higher than those of conventional HLNCC could be obtained. Here we present the inner mechanical structure of ASAS, together with the results of the simulating design.

Journal Articles

Development of sample assay system equipped with $$^{3}$$He Alternative Neutron Detectors (ASAS), 2; Results of ASAS measurement test

Tanigawa, Masafumi; Mukai, Yasunobu; Kurita, Tsutomu; Makino, Risa; Nakamura, Hironobu; Tobita, Hiroshi; Ozu, Akira; Kureta, Masatoshi; Seya, Michio

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12

Against the background of the serious shortage of $$^{3}$$He gas, design and development of a new detector equipped ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillation neutron detectors in JAEA, with the support of the government (the Ministry of Education, Culture, Sports, Science & Technology). The design of the alternative $$^{3}$$He detector is referred from INVS (INVentory Sample assay system (HLNCC (High Level Neutron Coincidence Counter) type)) which is being used for the verification of MOX powder etc. and is named it as ASAS (Alternative Sample Assay System). In order to prove the Pu quantitative performance as an alternative technology, several measurement tests and comparison test with INVS were conducted using ASAS. In these tests, evaluation of fundamental performance (counting efficiency and die-away time) and uncertainty evaluations were implemented. As a result, although fundamental performance of ASAS was not achieved to the one of INVS, we could confirm that ASAS has almost the same Pu quantitative performance including measurement uncertainty as that of INVS.

Journal Articles

Demonstration result of sample assay system equipped alternative He-3 detectors

Nakamura, Hironobu; Mukai, Yasunobu; Tobita, Hiroshi; Nakamichi, Hideo; Ozu, Akira; Kureta, Masatoshi; Kurita, Tsutomu; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.45 - 53, 2015/08

JAEA conducted an R&D project to develop a new type of neutron detector using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator (as an alternative neutron detector to He-3) with support of Japanese government. The design of the JAEAs alternative system (ASAS: Alternative Sample Assay System using ceramic scintillator tubes) refers basically to the INVS (INVentory Sample assay system) which is the passive type of neutron assay system equipped total 18 He-3 tubes and capable of measuring the small amount of Pu in the MOX powder or Pu nitrate solution in a vial for nuclear material accountancy and safeguards verification. In order to prove the alternative technology and the performance instead of He-3 detector, and to establish Pu measurement capability, JAEA developed and fabricated ASAS equipped 24 alternative ceramic scintillator tubes (which is equivalent to the same counting efficiency of INVS) and demonstrated. The demonstration activity implemented the confirmation of reproducibility about sample positioning, optimization of detector parameters, counting statistical uncertainty, stability check and figure of merit (FOM) using Cf check source and actual MOX powder in PCDF (Plutonium Conversion Development Facility). In addition, performance comparison between the current INVS and the ASAS was also implemented. In this paper, we present demonstration results with design information with Monte-Carlo simulation code (MCNP).

Journal Articles

Development and demonstration of a Pu NDA system using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator detectors

Nakamura, Hironobu; Ozu, Akira; Kobayashi, Nozomi*; Mukai, Yasunobu; Sakasai, Kaoru; Nakamura, Tatsuya; Soyama, Kazuhiko; Kureta, Masatoshi; Kurita, Tsutomu; Seya, Michio

Proceedings of INMM 55th Annual Meeting (Internet), 9 Pages, 2014/07

To establish an alternative technique of He-3 neutron detector that is used for nuclear material accountancy and safeguards, we have started an R&D project to develop a new type of neutron detector (Pu NDA system) using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator with support of Japanese government. The design of the alternative system (ASAS: Alternative Sample Assay System) is basically referenced from INVS (INVentory Sample assay system) which is passive neutron assay system of plutonium and has total 18 He-3 tubes (about 42% of counting efficiency), and the small amount of Pu in the MOX powder or Pu nitrate solution in a vial can be measured. In order to establish the technology and performance after the fabrication of the new detector progresses, we are planning to conduct demonstration activity in the early 2015 experimentally. The demonstration activity implements the confirmation of reproducibility about sample positioning, optimization of detector parameters, counting statistical uncertainty, stability (temperature and $$gamma$$-ray change) check and figure of merit (FOM) using check source and actual MOX powder. In addition to that, performance comparison between current INVS and the ASAS are also conducted. In this paper, we present some analytical study results using a Monte-Carlo simulation code (MCNP), entire ASAS design and demonstration plan to prove technology and performance.

Journal Articles

Development of an alternative plutonium canister assay system (APCA) using He-3 alternative neutron detector

Ozu, Akira; Kureta, Masatoshi; Haruyama, Mitsuo; Takase, Misao; Kurata, Noritaka; Kobayashi, Nozomi; Soyama, Kazuhiko; Nakamura, Tatsuya; Sakasai, Kaoru; To, Kentaro; et al.

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-34-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2013/10

no abstracts in English

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:8 Percentile:49.7(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

JAEA Reports

Conceptual design of the SlimCS fusion DEMO reactor

Tobita, Kenji; Nishio, Satoshi*; Enoeda, Mikio; Nakamura, Hirofumi; Hayashi, Takumi; Asakura, Nobuyuki; Uto, Hiroyasu; Tanigawa, Hiroyasu; Nishitani, Takeo; Isono, Takaaki; et al.

JAEA-Research 2010-019, 194 Pages, 2010/08

JAEA-Research-2010-019-01.pdf:48.47MB
JAEA-Research-2010-019-02.pdf:19.4MB

This report describes the results of the conceptual design study of the SlimCS fusion DEMO reactor aiming at demonstrating fusion power production in a plant scale and allowing to assess the economic prospects of a fusion power plant. The design study has focused on a compact and low aspect ratio tokamak reactor concept with a reduced-sized central solenoid, which is novel compared with previous tokamak reactor concept such as SSTR (Steady State Tokamak Reactor). The reactor has the main parameters of a major radius of 5.5 m, aspect ratio of 2.6, elongation of 2.0, normalized beta of 4.3, fusion out put of 2.95 GW and average neutron wall load of 3 MW/m$$^{2}$$. This report covers various aspects of design study including systemic design, physics design, torus configuration, blanket, superconducting magnet, maintenance and building, which were carried out increase the engineering feasibility of the concept.

Journal Articles

Compact DEMO, SlimCS; Design progress and issues

Tobita, Kenji; Nishio, Satoshi; Enoeda, Mikio; Kawashima, Hisato; Kurita, Genichi; Tanigawa, Hiroyasu; Nakamura, Hirofumi; Honda, Mitsuru; Saito, Ai*; Sato, Satoshi; et al.

Nuclear Fusion, 49(7), p.075029_1 - 075029_10, 2009/07

 Times Cited Count:137 Percentile:97.72(Physics, Fluids & Plasmas)

Recent design study on SlimCS focused mainly on the torus configuration including blanket, divertor, materials and maintenance scheme. For vertical stability of elongated plasma and high beta access, a sector-wide conducting shell is arranged in between replaceable and permanent blanket. The reactor adopts pressurized-water-cooled solid breeding blanket. Compared with the previous advanced concept with supercritical water, the design options satisfying tritium self-sufficiency are relatively scarce. Considered divertor technology and materials, an allowable heat load to the divertor plate should be 8 MW/m$$^{2}$$ or lower, which can be a critical constraint for determining a handling power of DEMO (a combination of alpha heating power and external input power for current drive).

Journal Articles

Flowability measurement of coarse particles using vibrating tube method

Ishii, Katsunori; Suzuki, Masahiro; Yamamoto, Takuma; Kihara, Yoshiyuki; Kato, Yoshiyuki; Kurita, Tsutomu; Yoshimoto, Katsunobu; Yasuda, Masatoshi*; Matsusaka, Shuji*

Journal of Chemical Engineering of Japan, 42(5), p.319 - 324, 2009/05

 Times Cited Count:7 Percentile:29.75(Engineering, Chemical)

The flowability of coarse particles has been experimentally investigated using the vibrating tube method, to evaluate the applicability of this method to MOX (mixed oxide of PuO$$_{2}$$ and UO$$_{2}$$) particles which are nuclear fuel used for electric power production. Five sizes of non-radioactive model particles, smaller than 850 micrometers, made of ZrO$$_{2}$$ were prepared, and the experiments were carried out using vibrating tubes with an outlet diameter from 2 to 4 mm. The outlet diameter significantly affected the flowability measurements. When using the tube with a 4-mm-outlet diameter, the flowability of all the model particles was successfully measured. The inclination angle of the tube, also, affected the flowability measurements. From the advantages of high sensitivity, short measurement time, simple structure, and easy operation, the vibrating tube method is expected to be applied to the remote flowability measurement of the MOX particles.

Journal Articles

SlimCS; Compact low aspect ratio DEMO reactor with reduced-size central solenoid

Tobita, Kenji; Nishio, Satoshi; Sato, Masayasu; Sakurai, Shinji; Hayashi, Takao; Shibama, Yusuke; Isono, Takaaki; Enoeda, Mikio; Nakamura, Hirofumi; Sato, Satoshi; et al.

Nuclear Fusion, 47(8), p.892 - 899, 2007/08

 Times Cited Count:57 Percentile:86.6(Physics, Fluids & Plasmas)

The concept for a compact DEMO reactor named "SlimCS" is presented. Distinctive features of the concept is low aspect ratio ($$A$$ = 2.6) and use of a reduced-size center solenoid (CS) which has a function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field (TF) coil system which contributes to reducing the weight and construction cost of the reactor. SlimCS is as compact as advanced commercial reactor designs such as ARIES-RS and produces 1 GWe in spite of moderate requirements for plasma parameters. Merits of low-$$A$$, i.e. vertical stability for high elongation and high beta limit are responsible for such reasonable physics requirements.

Journal Articles

Overview of national centralized tokamak program; Mission, design and strategy to contribute ITER and DEMO

Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.

Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12

To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.

Journal Articles

Compatibility of reduced activation ferritic steel wall with high performance plasma on JFT-2M

Tsuzuki, Kazuhiro; Kamiya, Kensaku; Shinohara, Koji; Bakhtiari, M.*; Ogawa, Hiroaki; Kurita, Genichi; Takechi, Manabu; Kasai, Satoshi; Sato, Masayasu; Kawashima, Hisato; et al.

Nuclear Fusion, 46(11), p.966 - 971, 2006/11

 Times Cited Count:16 Percentile:48.35(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Overview of the national centralized tokamak programme

Kikuchi, Mitsuru; Tamai, Hiroshi; Matsukawa, Makoto; Fujita, Takaaki; Takase, Yuichi*; Sakurai, Shinji; Kizu, Kaname; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; et al.

Nuclear Fusion, 46(3), p.S29 - S38, 2006/03

 Times Cited Count:13 Percentile:41.76(Physics, Fluids & Plasmas)

The National Centralized Tokamak (NCT) facility program is a domestic research program for advanced tokamak research to succeed JT-60U incorporating Japanese university accomplishments. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility and mobility is pursued in aspect ratio and shape controllability, feedback control of resistive wall modes, wide current and pressure profile control capability for the demonstration of the high-b steady state.

Journal Articles

Engineering design and control scenario for steady-state high-beta operation in national centralized tokamak

Tsuchiya, Katsuhiko; Akiba, Masato; Azechi, Hiroshi*; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 81(8-14), p.1599 - 1605, 2006/02

 Times Cited Count:1 Percentile:9.98(Nuclear Science & Technology)

no abstracts in English

50 (Records 1-20 displayed on this page)