Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Plutonium dioxide particle imaging using a high-resolution alpha imager for radiation protection

Morishita, Yuki; Kurosawa, Shunsuke*; Yamaji, Akihiro*; Hayashi, Masateru*; Sasano, Makoto*; Makita, Taisuke*; Azuma, Tetsushi*

Scientific Reports (Internet), 11(1), p.5948_1 - 5948_11, 2021/03

AA2020-0761.pdf:1.59MB

 Times Cited Count:2 Percentile:31.78(Multidisciplinary Sciences)

The internal exposure of workers who inhale plutonium dioxide particles in nuclear facilities is a crucial matter for human protection from radiation. To determine the activity median aerodynamic diameter values at the working sites of nuclear facilities in real time, we developed a high-resolution alpha imager using a ZnS(Ag) scintillator sheet, an optical microscope, and an electron-multiplying charge-coupled device camera. Then, we designed and applied a setup to measure a plutonium dioxide particle and identify the locations of the individual alpha particles in real time. Employing a Gaussian fitting, we evaluated the average spatial resolution of the multiple alpha particles was evaluated to be 16.2 umFWHM with a zoom range of 5 x. Also, the spatial resolution for the plutonium dioxide particle was 302.7 umFWHM due to the distance between the plutonium dioxide particle and the ZnS(Ag) scintillator. The influence of beta particles was negligible, and alpha particles were discernible in the alpha-beta particle contamination. The equivalent volume diameter of the plutonium dioxide particle was calculated from the measured count rate. These results indicate that the developed alpha imager is effective in the plutonium dioxide particle measurements at the working sites of nuclear facilities for internal exposure dose evaluation.

Journal Articles

Development of ${it spatiotemporal}$ measurement and analysis techniques in X-ray photoelectron spectroscopy; From NAP-HARPES to 4D-XPS

Toyoda, Satoshi*; Yamamoto, Tomoki*; Yoshimura, Masashi*; Sumida, Hirosuke*; Mineoi, Susumu*; Machida, Masatake*; Yoshigoe, Akitaka; Suzuki, Satoru*; Yokoyama, Kazushi*; Ohashi, Yuji*; et al.

Vacuum and Surface Science, 64(2), p.86 - 91, 2021/02

We have developed ${it spatiotemporal}$ measurement and analysis techniques in X-ray photoelectron spectroscopy. To begin with, time-division depth profiles of gate stacked film interfaces have been achieved by NAP-HARPES (Near Ambient Pressure Hard X-ray Angle-Resolved Photo Emission Spectroscopy) data. We then have promoted our methods to quickly perform peak fittings and depth profiling from time-division ARPES data, which enables us to realize 4D-XPS analysis. It is found that the traditional maximum entropy method (MEM) combined with Jackknife averaging of sparse modeling in NAP-HARPES data is effective to perform dynamic measurement of depth profiles with high precision.

Journal Articles

Recent development of neutron detectors for pulsed compact neutron sources

Arikawa, Yasunobu*; Ikeda, Yujiro; Shimizu, Hirohiko*; Hanayama, Ryohei*; Kondo, Yasuharu*; Kurosawa, Shunsuke*

Reza Kenkyu, 46(11), p.634 - 640, 2018/11

Compact neutron sources have been used as various diagnostics such as a neutron diffraction, neutron resonant analysis, and neutron radiography. The developments of the neutron detectors are essential for all of these applications, while the techniques are strongly dependent on the neutron energy and the aim of the measurement. This paper reviews neutron detection techniques pertinent to promote compact neutron source uses. Along with general neutron detection systems with conventional counters for slow neutrons, we have highlighted detectors for high energy neutrons with high time resolution and high sensitivity which could be applied in a laser-driven compact neutron source.

Journal Articles

Field test around Fukushima Daiichi Nuclear Power Plant site using improved Ce:Gd$$_{3}$$(Al,Ga)$$_{5}$$O$$_{12}$$ scintillator Compton camera mounted on an unmanned helicopter

Shikaze, Yoshiaki; Nishizawa, Yukiyasu; Sanada, Yukihisa; Torii, Tatsuo; Jiang, J.*; Shimazoe, Kenji*; Takahashi, Hiroyuki*; Yoshino, Masao*; Ito, Shigeki*; Endo, Takanori*; et al.

Journal of Nuclear Science and Technology, 53(12), p.1907 - 1918, 2016/12

 Times Cited Count:37 Percentile:96.48(Nuclear Science & Technology)

The Compton camera was improved for use with the unmanned helicopter. Increase of the scintillator array from 4$$times$$4 to 8$$times$$8 and expanse of the distance between the two layers contributed to the improvements of detection efficiency and angular resolution, respectively. Measurements were performed over the riverbed of the Ukedo river of Namie town in Fukushima Prefecture. By programming of flight path and speed, the areas of 65 m $$times$$ 60 m and 65 m $$times$$ 180 m were measured during about 20 and 30 minutes, respectively. By the analysis the air dose rate maps at 1 m height were obtained precisely with the angular resolution corresponding to the position resolution of about 10 m from 10 m height. Hovering flights were executed over the hot spot areas for 10-20 minutes at 5-20 m height. By using the reconstruction software the $$gamma$$-ray images including the hot spots were obtained with the angular resolution same as that evaluated in the laboratory (about 10$$^{circ}$$).

JAEA Reports

The Outline of investigation on integrity of JMTR concrete structures, cooling system and utility facilities

Ebisawa, Hiroyuki; Hanakawa, Hiroki; Asano, Norikazu; Kusunoki, Hidehiko; Yanai, Tomohiro; Sato, Shinichi; Miyauchi, Masaru; Oto, Tsutomu; Kimura, Tadashi; Kawamata, Takanori; et al.

JAEA-Technology 2009-030, 165 Pages, 2009/07

JAEA-Technology-2009-030.pdf:69.18MB

The condition of facilities and machinery used continuously were investigated before the renewal work of JMTR on FY 2007. The subjects of investigation were reactor building, primary cooling system tanks, secondary cooling system piping and tower, emergency generator and so on. As the result, it was confirmed that some facilities and machinery were necessary to repair and others were used continuously for long term by maintaining on the long-term maintenance plan. JMTR is planed to renew by the result of this investigation.

Oral presentation

Renewal of JMTR facility, 1; Outline of nuclear reactor facilities update and maintenance plan for the future

Asano, Norikazu; Kurosawa, Akihiko; Yanai, Tomohiro; Watahiki, Shunsuke; Kameyama, Yasuhiko; Onoue, Ryuji; Tobita, Kenji; Fukasaku, Akitomi

no journal, , 

no abstracts in English

Oral presentation

Development of energy recognizable type gamma camera mounted on the unmanned helicopter, 3; Field test around the Fukushima Daiichi NPP site

Shikaze, Yoshiaki; Torii, Tatsuo; Shimazoe, Kenji*; Jiang, J.*; Takahashi, Hiroyuki*; Kurosawa, Shunsuke*; Kamada, Kei*; Yoshikawa, Akira*; Yoshino, Masao*; Ito, Shigeki*; et al.

no journal, , 

no abstracts in English

Oral presentation

Development of energy recognizable type gamma camera mounted on the unmanned helicopter II, 2; Field test around the Fukushima Daiichi NPP site

Shikaze, Yoshiaki; Torii, Tatsuo; Nishizawa, Yukiyasu; Yoshida, Mami*; Shimazoe, Kenji*; Jiang, J.*; Takahashi, Hiroyuki*; Kurosawa, Shunsuke*; Kamada, Kei*; Yoshikawa, Akira*; et al.

no journal, , 

no abstracts in English

Oral presentation

Feasibility study on a red-emitting-scintillation probe with an optical fiber for a high-rate dose-monitor

Kodama, Shohei*; Kurosawa, Shunsuke*; Morishita, Yuki; Usami, Hiroshi; Hayashi, Masateru*; Tanaka, Hiroki*; Yoshino, Masao*; Kamada, Kei*; Yoshikawa, Akira*; Torii, Tatsuo

no journal, , 

After Fukushima 1st Nuclear Plant accident, a large number of radioactive pollutants or nuclear debris with very high dose of more than a few Sv/h still have existed. To estimate the dose of such pollutants, a Japan Atomic Energy Agency research group has suggested a new technique to use a long optical fiber and a red-emitting scintillator, and the scintillation photons are read outside of high dose area. We tested the gamma-ray detection performance of a ruby (Cr:Al$$_{2}$$O$$_{3}$$) and a newly developed Cs$$_{2}$$HfI$$_{6}$$ scintillators as a scintillating probe coupled with an optical fiber in this study.

Oral presentation

Plutonium particle imaging using an ultra-high-resolution alpha imager

Morishita, Yuki; Kurosawa, Shunsuke*; Yamaji, Akihiro*; Hayashi, Masateru*; Sasano, Makoto*; Makita, Taisuke*; Azuma, Tetsushi*

no journal, , 

It is crucial in considering internal exposure when workers inside nuclear facilities inhale plutonium particles. The internal exposure dose is strongly affected by the particle size distribution defined as activity median aerodynamic diameter (AMAD). To acquire the AMAD value at the working site of the nuclear facility, we developed an alpha imaging detector using an optical camera and an optical microscope. Then, we applied it for plutonium particle measurements. The ZnS(Ag) scintillator sheet and a plutonium particle were close to each other. Alpha particles were absorbed in the ZnS(Ag) scintillator and were converted to scintillation light. An Electron Multiplying (EM) CCD camera was mounted on top of the optical microscope to capture scintillation light. The zoom range was adjustable from 5x - 20x. When using the zoom range of 20 x, the resolution and Field of View were 0.81 um/pixel and 412.9 um $$times$$ 412.9 um, respectively. The Full width at half maximum (FWHM) of an alpha particle was evaluated to be 17.9 um. Locations of individual alpha particles from a plutonium particle can be identified in real-time. The number of alpha counts was agreed with those measured using a commercial ZnS(Ag) scintillation counter. The measured alpha counts will be able to convert to radioactivities and AMAD. Thus, the ultra-high-resolution alpha imager will be promising plutonium particle measurements at the working sites of nuclear facilities.

Oral presentation

Development of discrimination method of alpha particles and other radiations by alpha particle imaging detector using a CCD camera

Morishita, Yuki; Sagawa, Naoki; Fujisawa, Makoto; Kurosawa, Shunsuke*; Sasano, Makoto*; Hayashi, Masateru*; Tanaka, Hiroki*

no journal, , 

This study reports the effects of different types of radiation on a high-resolution alpha imager, developed using an Electron Multiplying Charge-Coupled Device (EMCCD) camera. The imager was originally designed to visualize Pu oxide particles in decommissioning sites, where other types of radiation such as beta particles, gamma-rays, and neutrons are also present. The measurement of alpha particles, beta particles, gamma-rays, and neutrons were performed, and it was found that the EMCCD camera's sensor detected gamma-rays and neutrons. The discrimination method was based on the characteristics of the image distribution, where the image values were binarized and a Gaussian filter was applied to count the number of alpha particle spots. The results show that it is possible to discriminate between alpha and gamma (neutron) rays using the difference in intensity. The study provides important information for the development of radiation detection techniques in decommissioning sites.

Oral presentation

Measurement of beta, gamma, and neutron radiation using an alpha imager based on a CCD camera and discrimination from alpha particles

Morishita, Yuki; Sagawa, Naoki; Fujisawa, Makoto; Kurosawa, Shunsuke*; Sasano, Makoto*; Hayashi, Masateru*; Tanaka, Hiroki*

no journal, , 

This study reports the effects of different types of radiation on a high-resolution alpha imager, developed using an Electron Multiplying Charge-Coupled Device (EMCCD) camera. The imager was originally designed to visualize Pu oxide particles in decommissioning sites, where other types of radiation such as beta particles, gamma-rays, and neutrons are also present. The study aims to confirm the effects of these radiations on the imager and to develop a discrimination method between alpha particles and other radiations. The measurement of alpha particles, beta particles, gamma-rays, and neutrons were performed. The discrimination method was based on the characteristics of the image distribution, where the image values were binarized and a Gaussian filter was applied to count the number of alpha particle spots. The results show that it is possible to discriminate between alpha and gamma (neutron) rays using the difference in intensity. The study provides important information for the development of radiation detection techniques in decommissioning sites.

Oral presentation

Development of in-pipe exploration technology in high background radiation environment, 1; Research design

Torii, Tatsuo; Sanada, Yukihisa; Kurosawa, Shunsuke*; Hayashi, Takashi*; Sakagami, Takahide*; Kodama, Shyohei*

no journal, , 

In the decommissioning of the Fukushima Daiichi Nuclear Power Plant, non-destructive inspection of piping inside and outside the facility and inspection of contamination inside the piping after removal of the piping is an important issue. In order to set targets for nondestructive inspection inside the piping, we interviewed TEPCO and confirmed the following conditions: the diameters of pipes commonly used in the 1F facility (500A and 25A), hydrogen gas containing $$alpha$$-ray emitting nuclides, deposits, and moisture inside the pipes. Based on this situation, the two major themes of the research design were nondestructive inspection for internal penetration and radiological imaging. In this series of presentations, we will introduce the research plan and some of the results related to radiation imaging.

13 (Records 1-13 displayed on this page)
  • 1