Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09
After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.
Yamashita, Shinichiro; Nagase, Fumihisa; Kurata, Masaki; Nozawa, Takashi; Watanabe, Seiichi*; Kirimura, Kazuki*; Kakiuchi, Kazuo*; Kondo, Takao*; Sakamoto, Kan*; Kusagaya, Kazuyuki*; et al.
Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09
In Japan, the research and development (R&D) project on accident tolerant fuel and other components (ATFs) of light water reactors (LWRs) has been initiated in 2015 for establishing technical basis of ATFs. The Japan Atomic Energy Agency (JAEA) has coordinated and carried out this ATF R&D project in cooperation with power plant providers, fuel venders and universities for making the best use of the experiences, knowledges in commercial uses of zirconium-base alloys (Zircaloy) in LWRs. ATF candidate materials under consideration in the project are FeCrAl steel strengthened by dispersion of fine oxide particles(FeCrAl-ODS) and silicon carbide (SiC) composite, and are expecting to endure severe accident conditions in the reactor core for a longer period of time than the Zircaloy while maintaining or improving fuel performance during normal operations. In this paper, the progresses of the R&D project are reported.
Takano, Sho*; Kusagaya, Kazuyuki*; Goto, Daisuke*; Sakamoto, Kan*; Yamashita, Shinichiro
Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09
We focused on one of accident tolerant fuel (ATF) materials, Oxide Dispersion Strengthened Fe-Cr-Al Steel (FeCrAl-ODS). There is a reasonable prospect that FeCrAl-ODS is applied to BWRs, but relatively high neutron absorption should be compensated. To decrease adverse neutron economic impact, thin FeCrAl-ODS cladding was designed, and we evaluated characteristics of a core into which 99 Advanced BWR (ABWR) bundles with thin FeCrAl-ODS claddings were loaded. Thin FeCrAl-ODS water rods and channel boxes were also applied. We confirmed that FeCrAl-ODS core reactivity was sufficient by increasing enrichment of UO
fuel under the limit of 5 wt%. Moreover, some representative FeCrAl-ODS core characteristics were comparable to zircaloy core. We also confirmed that fuel thermal-mechanical behaviors of thin FeCrAl-ODS cladding at normal operation and transient conditions were acceptable. These results led to a conclusion that FeCrAl-ODS was applicable to BWR in the analysis range of this study.
Kimura, Akihiko*; Yuzawa, Sho*; Sakamoto, Kan*; Hirai, Mutsumi*; Kusagaya, Kazuyuki*; Yamashita, Shinichiro
Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09
The effect of Al addition on the PRW weldability of ODS steel is shown with the discussion focusing on the microstructure changes by the welding. The ordinary welding methods including electron beam (EB) welding and tungsten inert gas (TIG) welding were also applied to the SUS430 endcap welding to cladding tube made of FeCrAl-ODS steel. The endcap welded ODS steel tube samples were tensile tested at RT. The EB welded FeCrAl-ODS/SUS430 samples broke in the ODS steel tube, indicating that the weld bond is stronger than the ODS base metal. However, the TIG welded FeCrAl-ODS/SUS430 samples broke at a weld bond. X-ray CT scan analysis was performed for the weld bond, and the bonding strength was correlated with the X-ray CT results in order to assess the feasibility of those welding methods for ATF-ODS steel cladding.
Sakamoto, Kan*; Hirai, Mutsumi*; Ukai, Shigeharu*; Kimura, Akihiko*; Yamaji, Akifumi*; Kusagaya, Kazuyuki*; Kondo, Takao*; Yamashita, Shinichiro
Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 7 Pages, 2017/09
This paper will show the overview of current status of development of accident tolerant FeCrAl-ODS fuel claddings for BWRs (boiling water reactors) in the program sponsored and organized by the Ministry of Economy, Trade and Industry (METI) of Japan. This program is being carried out to create the technical basis for the practical use of the accident tolerant fuels and the other components in LWRs through multifaceted activities. In the development of FeCrAl-ODS fuel claddings both the experimental and the analytical studies have been performed. The acquisition and accumulation of key material properties of FeCrAl-ODS fuel claddings were conducted by using bar, sheet and tube shaped FeCrAl-ODS materials fabricated in this program to support the evaluations in the analytical studies. A neutron irradiation test was also started in the ORNL High Flux Isotope Reactor (HFIR) to examine the effect of neutron irradiation on the mechanical properties.
Suzuki, Motoe; Kusagaya, Kazuyuki*; Saito, Hiroaki*; Fuketa, Toyoshi
Journal of Nuclear Materials, 335(3), p.417 - 424, 2004/12
Times Cited Count:5 Percentile:35.5(Materials Science, Multidisciplinary)Experimental analysis was conducted on the Lift-Off experiment IFA-610.1 in Halden reactor by the FEMAXI-6 code using the detailed measured conditions of test-irradiation. Calculated fuel center temperatures on the two assumptions, i.e., (1) an enhanced thermal conductance across the pellet-clad bonding layer is maintained during the cladding creep-out by over-pressurization, and (2) the bonding layer is broken by the cladding creep-out, were compared with the measured data to analyze the effect of the creep-out by over-pressure inside the test pin. The measured center temperature rise was higher by a few tens of K than the prediction performed on the assumption (1), though this difference was much smaller than the predicted rise on the assumption (2). Therefore, it is appropriate to attribute the measured center temperature rise to the decrease of effective thermal conductance by irregular re-location of pellet fragments, etc. which was caused by cladding creep-out.
Sugiyama, Tomoyuki; Nakamura, Takehiko; Kusagaya, Kazuyuki*; Sasajima, Hideo; Nagase, Fumihisa; Fuketa, Toyoshi
JAERI-Research 2003-033, 76 Pages, 2004/01
Boiling water reactor (BWR) fuels with burnups of 41 to 45 GWd/tU were pulse-irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident (RIA) conditions. BWR fuel segment rods of 88BJ (STEP I) type from Fukushima-Daiichi Unit 3 nuclear power plant were refabricated into short test rods, and they were subjected to prompt enthalpy insertion from 293 to 607 J/g (70 to 145 cal/g) within about 20 ms. The fuel cladding had enough ductility against the prompt deformation due to pellet cladding mechanical interaction. The plastic hoop strain reached 1.5% at the peak location. The cladding surface temperature locally reached about 600 deg C. Recovery of irradiation defects in the cladding due to high temperature during the pulse irradiation was indicated via X-ray diffractometry. Fission gas release during the pulse irradiation was from 3.1% to 8.2%, depending on the peak fuel enthalpy and the normal operation conditions.
Kusagaya, Kazuyuki*; Sugiyama, Tomoyuki; Nakamura, Takehiko; Uetsuka, Hiroshi
JAERI-Tech 2002-105, 24 Pages, 2003/01
High-temperature and high-pressure influence on the destructive force at the fuel rod failure in reactivity-initiated-accident (RIA) simulating experiment using the NSRR (Nuclear Safety Research Reactor) is estimated, for the purpose of mechanical designing of a new experimental capsule for simulating the temperature and pressure condition of typical commercial BWR. When knowledge on pressure impulse and water hammer, which are the cause of the destructive force, and steam property dependence on temperature and pressure are taken into account, one can qualitatively estimate that the destructive force in the BWR operation condition is smaller than that in the room temperature and atmospheric pressure condition. The water column velocity, which determines the impact by water hammer, is further investigated quantitatively by modeling the experimental system and the water hammer phenomenon. As a result, the maximum velocity of water column in the BWR operation condition is calculated to be only about 10% of that in the room temperature and atmospheric pressure condition.
Nakamura, Takehiko; Kusagaya, Kazuyuki*; Sasajima, Hideo; Yamashita, Toshiyuki; Uetsuka, Hiroshi
Journal of Nuclear Science and Technology, 40(1), p.30 - 38, 2003/01
Times Cited Count:4 Percentile:31.76(Nuclear Science & Technology)Pulse irradiation tests of three types of ROX fuel, i.e. YSZ single phase, finely mixed two phase composite of YSZ and spinel, and the other composite of larger YSZ particles dispersed in spinel matrix, were conducted in the NSRR to investigate their behavior under RIA conditions. Owing to their lower melting temperatures than that of UO fuel, melting of ROX fuel occurred while the cladding was still solid and intact in the accident conditions. Therefore, consequence of the ROX fuel failure was quite different from that of UO
fuel. When the ROX fuels failed, a considerable amount of the molten fuel was released out to the surrounding coolant water. In spite of the release, no significant mechanical energy generation due to fuel/coolant thermal interaction was observed in the tested enthalpy range below 12 GJ/m
. In terms of the failure threshold, on the other hand, the ROX fuels failed at fuel volumetric enthalpies above 10 GJ/m
, which was comparable to that of UO
fuel. The results highlighted controlling parameters on the fuel behavior under the RIA conditions.
Yamashita, Toshiyuki; Kuramoto, Kenichi; Akie, Hiroshi; Nakano, Yoshihiro; Shirasu, Noriko; Nakamura, Takehiko; Kusagaya, Kazuyuki*; Omichi, Toshihiko*
Journal of Nuclear Science and Technology, 39(8), p.865 - 871, 2002/08
Times Cited Count:25 Percentile:81.69(Nuclear Science & Technology)Research on the plutonium rock-like oxide (ROX) fuels and their once-through burning in light water reactors has been performed to establish an option for utilizing and disposing effectively the excess plutonium. The ROX fuel is a sort of the inert matrix fuels and consists of mineral-like compounds such as yttria stabilized zirconia, spinel and corundum. A particle-dispersed fuel was devised to reduce damage by heavy fission fragments. Some preliminary results on swelling, fractional gas release and microstructure change for five ROX fuels were obtained from the irradiation test and successive post-irradiation examinations. Inherent disadvantages of the Pu-ROX fuel cores could be improved by adding 238U or 232Th as resonant materials, and all improved cores showed a nearly the same characteristics as the conventional UO2 core during transient conditions. The threshold enthalpy of the ROX fuel rod failure was found to be comparable to the fresh UO2 rod by pulse-irradiation tests simulating reactivity initiated accident conditions.
Nakamura, Takehiko; Kusagaya, Kazuyuki*; Fuketa, Toyoshi; Uetsuka, Hiroshi
Nuclear Technology, 138(3), p.246 - 259, 2002/06
Times Cited Count:31 Percentile:86.33(Nuclear Science & Technology)no abstracts in English
Nakamura, Takehiko; Kusagaya, Kazuyuki*; Yoshinaga, Makio; Uetsuka, Hiroshi
JAERI-Research 2001-054, 49 Pages, 2001/12
no abstracts in English
Kusagaya, Kazuyuki*; Nakamura, Takehiko; Yoshinaga, Makio; Okonogi, Kazunari*; Uetsuka, Hiroshi
JAERI-Research 2001-010, 44 Pages, 2001/03
no abstracts in English
Nakamura, Takehiko; Kusagaya, Kazuyuki*; Yoshinaga, Makio; Uetsuka, Hiroshi; Yamashita, Toshiyuki
Progress in Nuclear Energy, 38(3-4), p.379 - 382, 2001/02
Times Cited Count:8 Percentile:52.55(Nuclear Science & Technology)no abstracts in English
Yamashita, Toshiyuki; Kuramoto, Kenichi; Akie, Hiroshi; Nakano, Yoshihiro; Nitani, Noriko; Nakamura, Takehiko; Kusagaya, Kazuyuki*; Omichi, Toshihiko*
Proceedings of Workshop on Advanced Reactors with Innovative Fuels (ARWIF 2001) (CD-ROM), 10 Pages, 2001/00
no abstracts in English
Fuketa, Toyoshi; Nakamura, Takehiko; Kusagaya, Kazuyuki*; Sasajima, Hideo; Uetsuka, Hiroshi
NUREG/CP-0172, p.191 - 203, 2000/00
no abstracts in English
Matsunaga, Junji*; Une, Katsumi*; Kusagaya, Kazuyuki*; Hirosawa, Takashi; Sato, Isamu
no journal, ,
no abstracts in English
Yamashita, Shinichiro; Kondo, Keietsu; Aoki, So; Hashimoto, Naoyuki*; Ukai, Shigeharu*; Sakamoto, Kan*; Hirai, Mutsumi*; Kimura, Akihiko*; Kusagaya, Kazuyuki*
no journal, ,
As the lesson learned from the accident at the Fukushima Daiichi Nuclear Power Station, it is commonly recognized that development of the advanced fuel and core components with enhanced accident tolerance and high reliability is quite important for increasing safety of the existing Light Water Reactors (LWRs). FeCrAl-ODS steel is one of prospective candidate materials with enhanced accident tolerance and needs to be accumulated properly and efficiently fundamental and practical data for core and plant design of nuclear reactor. In this study, hardness measurement and microstructural observation for ion-irradiated FeCrAl-ODS steel were conducted in order to evaluate irradiation property in advance toward a research reactor irradiation test. The results indicated that steep irradiation hardening occurred at the initial stage of irradiation and also that nucleation and growth of irradiation defect cluster occurred at the higher dose than the irradiation hardening occurred.
Kusagaya, Kazuyuki*; Takano, Sho*; Goto, Daisuke*; Sakamoto, Kan*; Hirai, Mutsumi*; Yamashita, Shinichiro
no journal, ,
no abstracts in English
Sakamoto, Kan*; Hirai, Mutsumi*; Ukai, Shigeharu*; Kimura, Akihiko*; Yamaji, Akifumi*; Kusagaya, Kazuyuki*; Kondo, Takao*; Ioka, Ikuo; Yamashita, Shinichiro; Kaji, Yoshiyuki
no journal, ,
no abstracts in English