Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Benchmarks of depletion and decay heat calculation between MENDEL and MARBLE

Yokoyama, Kenji; Lahaye, S.*

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.109 - 116, 2020/10

CEA/DEN/DM2S/SERMA and JAEA/NSEC are working on benchmarks for burnup, isotopic concentrations and decay heat calculations in the collaboration framework between both organisms. Both actors of this benchmark are independently developing their own simulation code systems for computing quantities of interest in nuclear fuel cycle domain: MENDEL in CEA and MARBLE in JAEA. The purpose of the benchmark is to verify each system by comparing both calculation results on specific applications. MENDEL uses a several solvers for the resolution of Bateman equation. Runge-Kutta method or Chebyshev Rational Approximation method (CRAM) are used for irradiation computations. An analytical solver can also be used for decay calculations. MARBLE can use Krylov subspace method or CRAM method. As the first phase of the benchmark, we compared the calculated results of decay heat and isotropic concentrations following by a Pu-239 fast fission pulse. We applied nuclear data from three libraries: (1) JEFF-3.1.1, (2) JENDL/DDF-2015 + JENDL/FPY-2011, and (3) ENDF/B-VII.1. Nuclear data and burnup chain were generated from these libraries independently on each system. We confirmed that the results for both systems were in very good agreement with each other. Numerical results were also compared to experimental data. As the second phase of the benchmark, we are proceeding with a burnup calculation benchmark of MENDEL and MARBLE using the nuclear data and burnup chain provided by ORLIBJ33, which is a set of cross-section data based on JENDL-3.3 for ORIGEN-2 code system. We will also compare with calculation results by the ORIGEN-2 code with ORLIBJ33. Since the series of ORLIB, that is, ORLIBJ32, ORLIBJ33, and ORLIBJ40, have been widely used especially in Japan for many years, the comparison with ORLIB is effective for confirming the performance of MENDEL and MARBLE.

Journal Articles

Inter-code comparison of TRIPOLI${textregistered}$ and MVP on the MCNP criticality validation suite

Brun, E.*; Zoia, A.*; Trama, J. C.*; Lahaye, S.*; Nagaya, Yasunobu

Proceedings of International Conference on Nuclear Criticality Safety (ICNC 2015) (DVD-ROM), p.351 - 360, 2015/09

This paper presents a joint work conducted at CEA Saclay and JAEA Tokai aimed at comparing the Monte Carlo codes TRIPOLI${textregistered}$ and MVP on a selection of ICSBEP benchmarks. Our goal is to establish a common set of Monte Carlo input decks, as a basis for rigorous inter-code comparison in criticality-safety. As a reference, we will use the MCNP Criticality Validation Suite: other Monte Carlo developers might easily join that effort in the future. For the purpose of inter-code comparison, the TRIPOLI${textregistered}$ and MVP input decks have been translated from those of MCNP, without any further assumptions. Both TRIPOLI${textregistered}$ and MVP have been run with the same ENDF/B-VII.0 evaluated nuclear data, and as far as possible the same simulation options as in the original LANL work. In this abstract, we present preliminary results on the BIGTEN benchmark. In the full paper these will be extended to the 31 benchmarks of the MCNP Criticality Validation Suite. In the future, this database will also help in the analysis of sensitivity to nuclear data, CPU times and figures of merit.

Journal Articles

ITER test blanket module error field simulation experiments at DIII-D

Schaffer, M. J.*; Snipes, J. A.*; Gohil, P.*; de Vries, P.*; Evans, T. E.*; Fenstermacher, M. E.*; Gao, X.*; Garofalo, A. M.*; Gates, D. A.*; Greenfield, C. M.*; et al.

Nuclear Fusion, 51(10), p.103028_1 - 103028_11, 2011/10

 Times Cited Count:32 Percentile:82.21(Physics, Fluids & Plasmas)

Experiments at DIII-D investigated the effects of ferromagnetic error fields similar to those expected from proposed ITER Test Blanket Modules (TBMs). Studied were effects on: plasma rotation and locking; confinement; L-H transition; edge localized mode (ELM) suppression by resonant magnetic perturbations; ELMs and the H-mode pedestal; energetic particle losses; and more. The experiments used a 3-coil mock-up of 2 magnetized ITER TBMs in one ITER equatorial port. The experiments did not reveal any effect likely to preclude ITER operations with a TBM-like error field. The largest effect was slowed plasma toroidal rotation v across the entire radial profile by as much as $$Delta v/v_{0} sim 50%$$ via non-resonant braking. Changes to global $$Delta n/n_{0}$$, $$Delta v/v_{0}$$ and $$Delta H_{98}/H_{98,0}$$ were $$sim$$3 times smaller. These effects are stronger at higher $$beta$$ and lower $$v_{0}$$. Other effects were smaller.

Journal Articles

Empirical scaling of sawtooth period for onset of neoclassical tearing modes

Chapman, I. T.*; Buttery, R. J.*; Coda, S.*; Gerhardt, S.*; Graves, J. P.*; Howell, D. F.*; Isayama, Akihiko; La Haye, R. J.*; Liu, Y.*; Maget, P.*; et al.

Nuclear Fusion, 50(10), p.102001_1 - 102001_7, 2010/10

 Times Cited Count:44 Percentile:86.65(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Plasma models for real-time control of advanced tokamak scenarios

Moreau, D.*; Mazon, D.*; Walker, M. L.*; Ferron, J. R.*; Flanagan, S. M.*; Gohil, P.*; Groebner, R. J.*; La Haye, R. J.*; Schuster, E.*; Ou, Y.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

Journal Articles

Progress in the ITER physics basis, 3; MHD stability, operational limits and disruptions

Hender, T. C.*; Wesley, J. C.*; Bialek, J.*; Bondeson, A.*; Boozer, A. H.*; Buttery, R. J.*; Garofalo, A.*; Goodman, T. P.*; Granetz, R. S.*; Gribov, Y.*; et al.

Nuclear Fusion, 47(6), p.S128 - S202, 2007/06

 Times Cited Count:759 Percentile:98.25(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Stabilization and prevention of the 2/1 neoclassical tearing mode for improved performance in DIII-D

Prater, R.*; La Haye, R. J.*; Luce, T. C.*; Petty, C. C.*; Strait, E. J.*; Ferron, J. R.*; Humphreys, D. A.*; Isayama, Akihiko; Lohr, J.*; Nagasaki, Kazunobu*; et al.

Nuclear Fusion, 47(5), p.371 - 377, 2007/05

 Times Cited Count:56 Percentile:88.64(Physics, Fluids & Plasmas)

The $$m=2$$ /$$n=1$$ neoclassical tearing mode (NTM) has been observed to strongly degrade confinement and frequently lead to a disruption in high $$beta$$ discharges in DIII-D if allowed to grow to large size. Stabilization of grown NTMs by application of highly localized electron cyclotron current drive (ECCD) at the island location has led to operation at increased plasma pressure, up to the no-wall kink limit. After the NTM is stabilized by the ECCD, the correct location for the current drive is maintained using information from real-time equilibrium reconstructions which include measurements from the motional Stark effect diagnostic. This same process is used alternatively to prevent the mode from ever growing, leading to performance at the pressure limit in high performance hybrid discharges with $$beta$$ above 4%. Modeling using the modified Rutherford equation shows that the required power is in close agreement with the experimental threshold for prevention of the 2/1 NTM.

Journal Articles

Prevention of the 2/1 neoclassical tearing mode in DIII-D

Prater, R.*; La Haye, R. J.*; Luce, T. C.*; Petty, C. C.*; Strait, E. J.*; Ferron, J. R.*; Humphreys, D. A.*; Isayama, Akihiko; Lohr, J.*; Nagasaki, Kazunobu*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

Onset of the m/n=2/1 neoclassical tearing mode (NTM) has been prevented in high-performance DIII-D discharges using localized electron cyclotron current drive (ECCD). Active tracking of the $$q$$=2 surface location, using real-time equilibrium reconstructions with motional Stark effect data, allows the current drive to be maintained at the rational surface even in the absence of a detectable mode. With the application of this technique in DIII-D hybrid discharges, the 2/1 mode is avoided and good energy confinement is maintained for more than 1 second with $$beta$$ at the estimated n=1 no-wall stability limit for ideal kink modes ($$beta$$$$_{rm T}$$ approximately equals 3.9 % and normalized beta $$beta$$$$_{rm N}$$ approximately equals 3.2). The results can be understood through modeling using the modified Rutherford equation.

Journal Articles

MHD limits to tokamak operation and their control

Zohm, H.*; Gantenbein, G.*; Isayama, Akihiko; Keller, A.*; La Haye, R. J.*; Maraschek, M.*; M$"u$ck, A.*; Nagasaki, Kazunobu*; Pinches, S. D.*; Strait, E. J.*

Plasma Physics and Controlled Fusion, 45(12A), p.A163 - A173, 2003/12

 Times Cited Count:24 Percentile:60.93(Physics, Fluids & Plasmas)

A review of magnetohydrodynamic limits to tokamak operation in terms of current, density and pressure is given. Although the current and density limits in a tokamak usually lead to disruptive termination of the discharge, it is argued that these can be avoided by staying away from the respective limits. This is especially true since operation close to these limits is not really desirable, due to the decreased confinement at very high density and the high disruptivity at low q. On the other hand, the limit to plasma pressure set by neoclassical tearing modes (NTMs) and resistive wall modes (RWMs) is too low to guarantee economic operation of future fusion reactors. Therefore, active control of these two instabilities is now being studied. Noticeable progress has been made by NTM stabilization with ECCD. Avoidance of NTMs and RWMs by tailoring sawteeth and spinning the plasma, shows promising results. Also, experiments on direct RWM stabilization by active coils are showing their first encouraging results.

Oral presentation

Extrapolating neoclassical tearing mode physics to ITER

Buttery, R. J.*; La Haye, R. J.*; Coda, S.*; Gohil, P.*; Isayama, Akihiko; Jackson, G.*; Raju, D.*; Reimerdes, H.*; Sabbagh, S.*; Sen, A.*; et al.

no journal, , 

no abstracts in English

10 (Records 1-10 displayed on this page)
  • 1